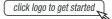


Power Resistor Thick Film Technology

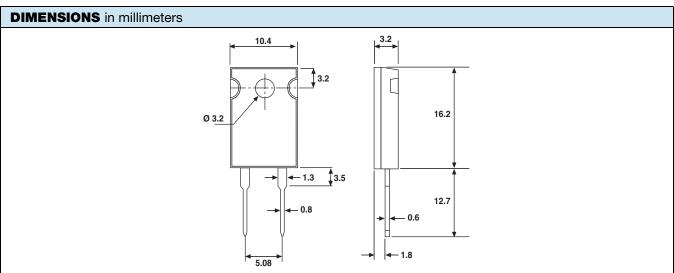
FEATURES

 50 W at 25 °C case temperature heatsink mounted



• Direct mounting ceramic on heatsink

• Broad resistance range: 0.010 Ω to 550 k Ω


- Non inductive
- TO-220 package: Compact and easy to mount
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

DESIGN SUPPORT TOOLS

3D Models Available

LTO series are the extension of RTO types. We used the direct ceramic mounting design (no metal tab) of our RCH power resistors applied to semiconductor packages.

Note

[•] Tolerances unless stated: ± 0.3 mm

STANDA	STANDARD ELECTRICAL SPECIFICATIONS							
MODEL	SIZE	$\begin{array}{c} \textbf{RESISTANCE} \\ \textbf{RANGE} \\ \Omega \end{array}$	RATED POWER P _{25 °C} W	LIMITING ELEMENT VOLTAGE U _L V	TOLERANCE ± %	TEMPERATURE COEFFICIENT ± ppm/°C	$\begin{array}{c} \textbf{CRITICAL} \\ \textbf{RESISTANCE} \\ \Omega \end{array}$	
LTO 50	TO-220	0.010 to 550K	50	500	1, 2, 5, 10	150, 250, 700, 900	5K	

MECHANICAL SPECIFICATIONS			
Mechanical Protection Molded			
Resistive Element	Thick film		
Substrate	Alumina		
Connections	Tinned copper		
Weight	2 g max.		
Mounting Torque	1 Nm		

ENVIRONMENTAL SPECIFICATIONS				
Temperature Range	-55 °C to +150 °C			
Climatic Category	55 / 155 / 56			
Flammability	IEC 60695-11-5 2 applications 30 s separated by 60 s			

TECHNICAL SPECIFICATIONS				
Dissipation and Associated	Onto a heatsink			
Power Rating and Thermal Resistance of the Component	50 W at +25 °C (case temp.) R _{TH (j - c)} : 2.5 °C/W Free air: 2.5 W at +25 °C			
Temperature Coefficient	See Performance table			
Standard	± 150 ppm/°C			
Dielectric Strength MIL STD 202	1500 V _{RMS} - 1 min 10 mA max.			
Insulation Resistance	$\geq 10^4 \ \text{M}\Omega$			
Inductance	≤ 0.1 µH			

Revision: 16-Nov-17 1 Document Number: 50050

Vishay Sfernice

PERFORMANCE					
TESTS	CONDITIONS	REQUIREMENTS			
Momentary Overload	EN 60115-1 1.5 Pr / 5 s <i>U</i> _S < 1.5 <i>U</i> _L	± (0.5 % + 0.005 Ω)			
Rapid Temperature Change	EN 60115-1 IEC 60068-2-14 Test Na 5 cycles -55°C to +155°C	± (0.5 % + 0.005 Ω)			
Load Life	EN 60115-1 1000 h Pr at +25 °C	± (1 % + 0.005 Ω)			
Humidity (Steady State)	MIL-STD-202 method 103 B cond. D	± (0.5 % + 0.005 Ω)			
Vibration	MIL-STD-202 method 204 cond. D	± (0.2 % + 0.005 Ω)			
Terminal Strength	MIL-STD-202 method 211 cond. A1	± (0.2 % + 0.005 Ω)			
Shock	100G, MIL-STD-202 method 213 cond. I	± (0.5 % + 0.005 Ω)			

SPECIAL FEATURES					
Resistance Values	≥ 0.010	≥ 0.015	≥ 0.1	≥ 0.5	
Tolerances	± 1 % at ± 10 %				
Typical Temperature Coefficient (-55 ° to +155 °C)	± 900 ppm/°C	± 700 ppm/°C	± 250 ppm/°C	± 150 ppm/°C	

CHOICE OF THE HEATSINK

The user must choose according to the working conditions of the component (power, room temperature). Maximum working temperature must not exceed 150 °C. The dissipated power is simply calculated by the following ratio:

$$P \, = \, \frac{\Delta T}{R_{TH \, (j \, - \, c)} + R_{TH \, (c \, - \, h)} + R_{TH \, (h \, - \, a)}} (1)$$

P: Expressed in W

 $\Delta T \colon \mbox{Difference}$ between maximum working temperature and room temperature

 $R_{TH\,(j-c)}.$ Thermal resistance value measured between resistive layer and outer side of the resistor. It is the thermal resistance of the component.

 $R_{TH\ (c-h)}$: Thermal resistance value measured between outer side of the resistor and upper side of the heatsink. This is the thermal resistance of the interface (grease, thermal pad), and the quality of the fastening device.

R_{TH (h - a)}: Thermal resistance of the heatsink.

Example:

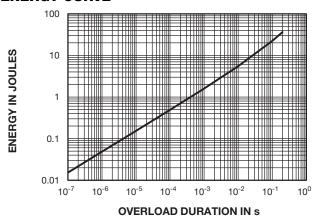
 $R_{TH\ (c\ -a)}$ for LTO 50 power rating 10 W at ambient temperature +25 °C

Thermal resistance R_{TH (i - c)}: 2.5 °C/W

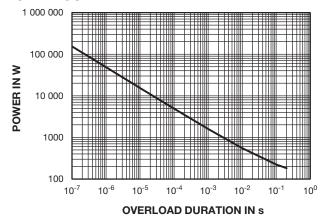
Considering equation (1) we have:

$$\begin{split} \Delta T &= 150~^{\circ}\text{C} - 25~^{\circ}\text{C} = 125~^{\circ}\text{C} \\ R_{\text{TH (j - c)}} + R_{\text{TH (c - h)}} + R_{\text{TH (h - a)}} &= \frac{\Delta T}{P} = \frac{125}{10} = 12.5~^{\circ}\text{C/W} \\ R_{\text{TH (c - h)}} + R_{\text{TH (h - a)}} &= 12.5~^{\circ}\text{C/W} - 2.5~^{\circ}\text{C/W} = 10~^{\circ}\text{C/W} \end{split}$$

with a thermal grease $R_{TH (c-h)} = 1$ °C/W, we need a heatsink with $R_{TH (h-a)} = 9$ °C/W.

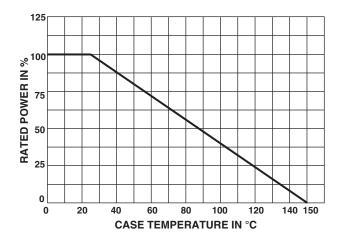


OVERLOADS


In any case the applied voltage must be lower than the maximum overload voltage of 750 V.

The values indicated on the graph below are applicable to resistors in air or mounted onto a heatsink.

ENERGY CURVE


POWER CURVE

POWER RATING

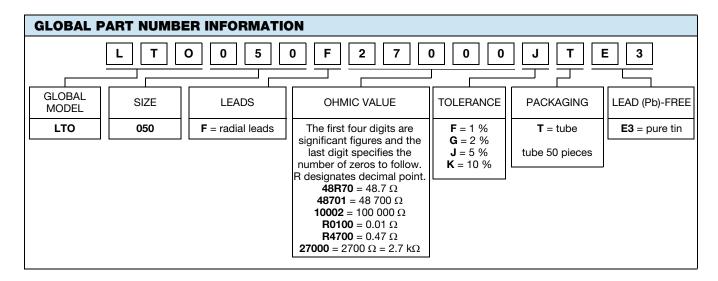
The temperature of the case should be maintained within the limits specified.

To improve the thermal conductivity, surfaces in contact should be coated with a silicone grease and the torque applied on the screw for tightening should be around 1 Nm.

PACKAGING

Tube of 50 units

MARKING


Model, style, resistance value (in Ω), tolerance (in %), manufacturing date, Vishay Sfernice trademark.

www.vishay.com

Vishay Sfernice

ORDERING INFORMATION							
LTO	50	F	2.7 k Ω	± 1 %	XXX	TU50	e3
MODEL	STYLE	CONNECTIONS	RESISTANCE VALUE	± 1 % ± 2 % ± 5 % ± 10 %	CUSTOM DESIGN optional on request: special TCR, shape etc.	PACKAGING	LEAD (Pb)-FREE

RELATED DOCUMENTS				
APPLICATION NOTES				
Potentiometers and Trimmers	www.vishay.com/doc?51001			
Guidelines for Vishay Sfernice Resistive and Inductive Components	www.vishay.com/doc?52029			

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Vishay:

```
        LTO050F10000JTE3
        LTO050F10001JTE3
        LTO050F100R0JTE3
        LTO050F10R00JTE3
        LTO050F1R000JTE3

        LTO050F22R00JTE3
        LTO050F2R200JTE3
        LTO050F47R00JTE3
        LTO050F4R700JTE3
        LTO050FR000JTE3

        LTO050FR0100JTE3
        LTO050FR0220JTE3
        LTO050FR0470JTE3
        LTO050FR0500JTE3
        LTO050FR0680JTE3

        LTO050FR1000JTE3
        LTO050FR4700JTE3
        LTO050F1R000FTE3
        LTO050FR0100FTE3
        LTO050FR0100FTE3

        LTO050F100R0FTE3
        LTO050F22R00FTE3
        LTO050F22R00FTE3
        LTO050F22R00FTE3
```