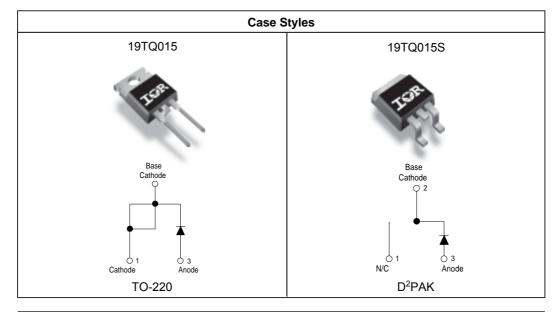
SCHOTTKY RECTIFIER

19TQ015 19TQ015S

19 Amp

I_{F(AV)} = 19Amp V_R = 15V


Characteristics	Values	Units
I _{F(AV)} Rectangular waveform	19	A
V _{RRM}	15	V
I _{FSM} @tp=5μssine	700	А
V _F @19 Apk, T _J = 75°C	0.32	V
T _J range	- 55 to 125	°C

Major Ratings and Characteristics

Description/ Features

The 19TQ015 Schottky rectifier has been optimized for ultra low forward voltage drop specifically for the OR-ing of parallel power supplies. The proprietary barrier technology allows for reliable operation up to 125° C junction temperature. Typical applications are in parallel switching power supplies, converters, reverse battery protection, and redundant power subsystems.

- 125°C T₁ operation ($V_R < 5V$)
- Optimized for OR-ing applications
- Ultra low forward voltage drop
- High frequency operation
- Guard ring for enhanced ruggedness and long term reliability
- High purity, high temperature epoxy encapsulation for enhanced mechanical strength and moisture resistance

Document Number: 93253

19TQ015/ 19TQ015S

Bulletin PD-20266 rev. D 06/06

International **tor** Rectifier

Voltage Ratings

Part number	19TQ015	
V _R Max. DC Reverse Voltage (V)	15	
V _{RWM} Max. Working Peak Reverse Voltage (V)	15	

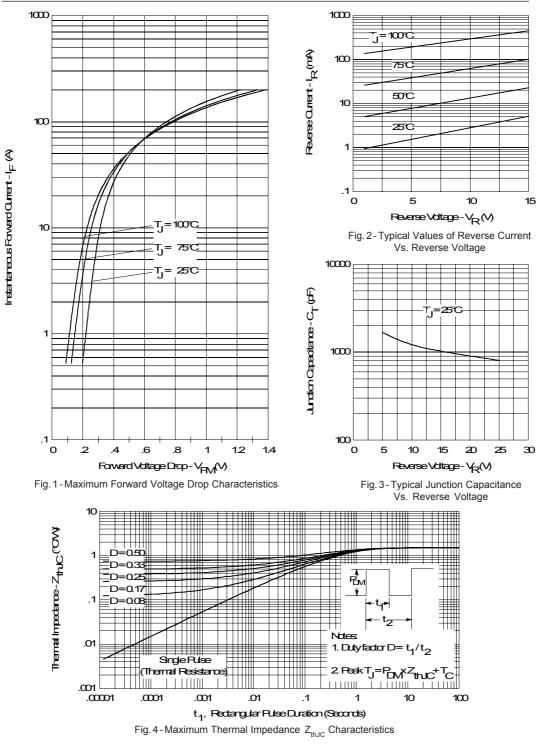
Absolute Maximum Ratings

	Parameters	19TQ	Units	Conditions		
I _{F(AV)}	Max.AverageForwardCurrent *SeeFig.5	19	A	50%dutycycle@T _c =80°C,rec	tangularwaveform	
I _{FSM}	Max. Peak One Cycle Non-Repetitive	700	Α	5µs Sine or 3µs Rect. pulse	Following any rated load condition and	
	Surge Current * See Fig. 7	330		10ms Sine or 6ms Rect. pulse	with rated V _{RRM} applied	
E _{AS}	Non-Repetitive Avalanche Energy	6.75	mJ	T_{J} =25 °C, I_{AS} =1.50 Amps, L=6 mH		
I _{AR}	Repetitive Avalanche Current	1.50	A	Current decaying linearly to zero in 1 µsec		
				Frequency limited by T_J max. V	_A =3xV _R typical	

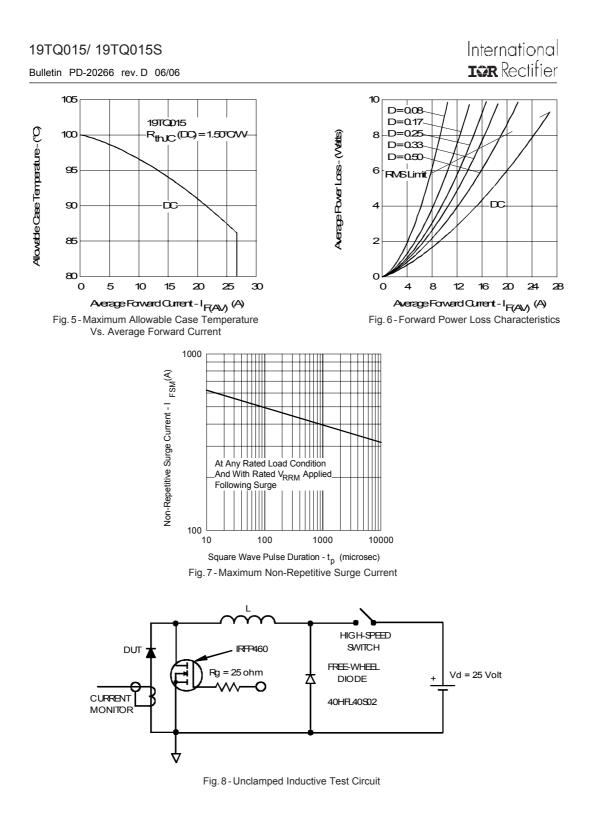
Electrical Specifications

	Parameters	19TQ	Units		Conditions	
V _{FM}	Max. Forward Voltage Drop (1)	0.36	V	@ 19A	T - 25 °C	
	* See Fig. 1	0.46	V	@ 38A	T _J = 25 °C	
		0.32	V	@ 19A	T,= 75 °C	
		0.43	V	@ 38A	1, 100	
I _{RM}	Max. Reverse Leakage Current (1)	10.5	mA	T _J = 25 °C	V_{p} = rated V_{p}	
	* See Fig. 2	522	mA	T _J = 100 °C	v _R - lateu v _R	
		465	mA	T _J = 100 °C,	00 °C, V _R = 12V	
		285	mA	T _J = 100 °C, V _R = 5V		
CT	Max. Junction Capacitance	2000	pF	V_R = 5 V_{DC} (test signal range 100Khz to 1Mhz) 25 °C		
Ls	Typical Series Inductance	8.0	nH	Measured lead to lead 5mm from package body		
dv/dt	Max. Voltage Rate of Change	10000	V/ µs	(Rated V _R)		

Thermal-Mechanical Specifications

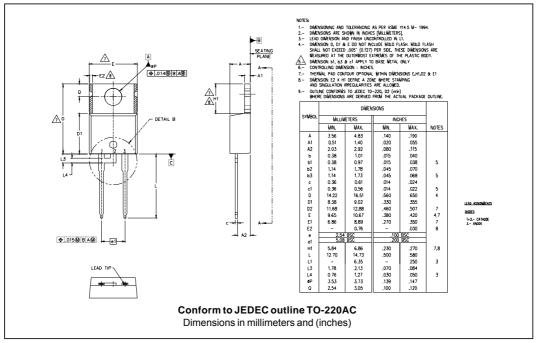

(1) Pulse Width < 300 μ s, Duty Cycle < 2%

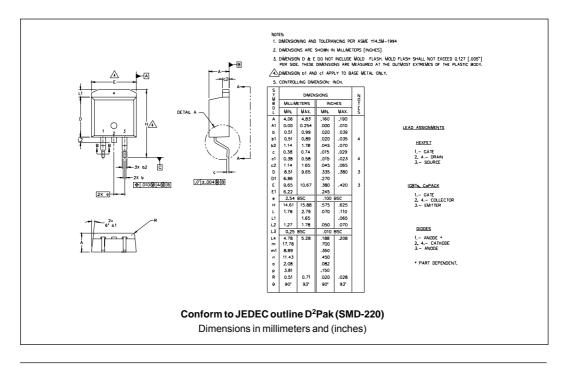
	Parameters		19TQ	Units	Conditions
TJ	Max. Junction Temperature Range		-55 to 125	°C	
T _{stg}	Max. Storage Temperature Range		-55 to 150	°C	
R _{thJC}	Max. Thermal Resistance Ju to Case	unction	1.50	°C/W	DC operation *See Fig. 4
R _{thCS}	Typical Thermal Resistance Heatsink	e, Case to	0.50	°C/W	Mounting surface, smooth and greased
wt	Approximate Weight		2 (0.07)		g (oz.)
Т	Mounting Torque	Min.	6(5)	Kg-cm	
		Max.	12(10)	(lbf-in)	
	Marking Device		10TQ045		CaseStyleTO-220
			10TQ045S		Case Style D ² Pak


Document Number: 93253

19TQ015/ 19TQ015S

Document Number: 93253

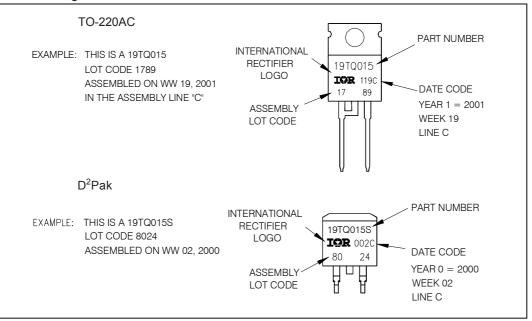


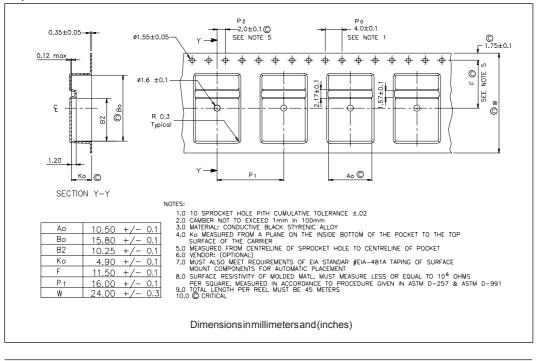

Document Number: 93253

19TQ015/ 19TQ015S

Bulletin PD-20266 rev. D 06/06

Outline Table

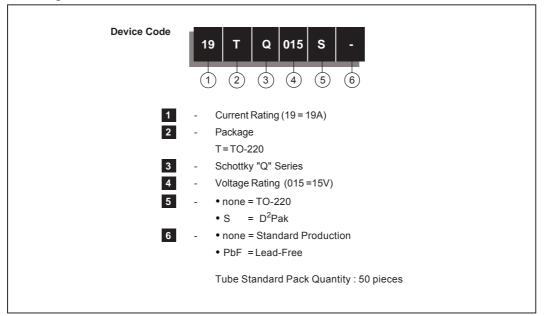



Document Number: 93253

19TQ015/ 19TQ015S

Part Marking Information

Tape & Reel Information



Document Number: 93253

19TQ015/ 19TQ015S

Bulletin PD-20266 rev. D 06/06

Ordering Information Table

Data and specifications subject to change without notice. This product has been designed and qualified for Industrial Level. Qualification Standards can be found on IR's Web site.

International

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7309 06/06

> www.vishay.com 7

Document Number: 93253

Vishay

Notice

The products described herein were acquired by Vishay Intertechnology, Inc., as part of its acquisition of International Rectifier's Power Control Systems (PCS) business, which closed in April 2007. Specifications of the products displayed herein are pending review by Vishay and are subject to the terms and conditions shown below.

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

International Rectifier[®], IR[®], the IR logo, HEXFET[®], HEXSense[®], HEXDIP[®], DOL[®], INTERO[®], and POWIRTRAIN[®] are registered trademarks of International Rectifier Corporation in the U.S. and other countries. All other product names noted herein may be trademarks of their respective owners.