

HT9435

P-Channel High Density Trench MOSFET

DESCRIPTION

The HT9435 uses advanced technology to provide excellent Rds (on), low switching loss and reasonable price.

This high density process is especially tailored to minimize on-state resistance. These devices are particularly suited for low voltage application such as cellular phone and notebook computer power management and other battery powered circuits, and low in-line power loss are needed in a very small outline surface mount package.

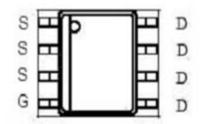
FEATURES

- -30V/-5.1A, R_{DS}(ON) = 50mΩ @ V_{GS} = -10V
- -30V/-3.6A, $R_{DS}(ON) = 95m\Omega @ V_{GS} = -4.5V$
- Super high dense cell design for low R_{DS}(ON)

Drain

Source

- Rugged and reliable
- SOP-8 package design


APPLICATIONS

- POWER Management in Note
- Portable Equipment

Gate

- Battery Powered System
- DC/DC Converter
- LCD Display

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS

(TA=25 °C Unless Otherwise Noted)

Para	meter	Symbol	Maximum	Unit
Drain-Source Voltag	ge	V _{DS}	-30	V
Gate-Source Voltag	le	V _{GS}	±25	V
Drain Current	Continuous (1)	I _D	-5.1	A
	Pulse (2)	I _{DM}	-20	
Drain-Source Diode Forward Current(1)		ا _s	-2.6	A
Maximum Power Dissipation (1)		PD	2.5	W
Operating junction temperature range		TJ	150	°C
Storage temperatur	e range	T _{STG}	-55 to 150	°C

THERMAL RESISTANCE RATINGS

Thermal Resistance	Symbol	Maximum	Unit
Junction-to-Ambient	Rθ _{JA}	50	°C/W

Note :

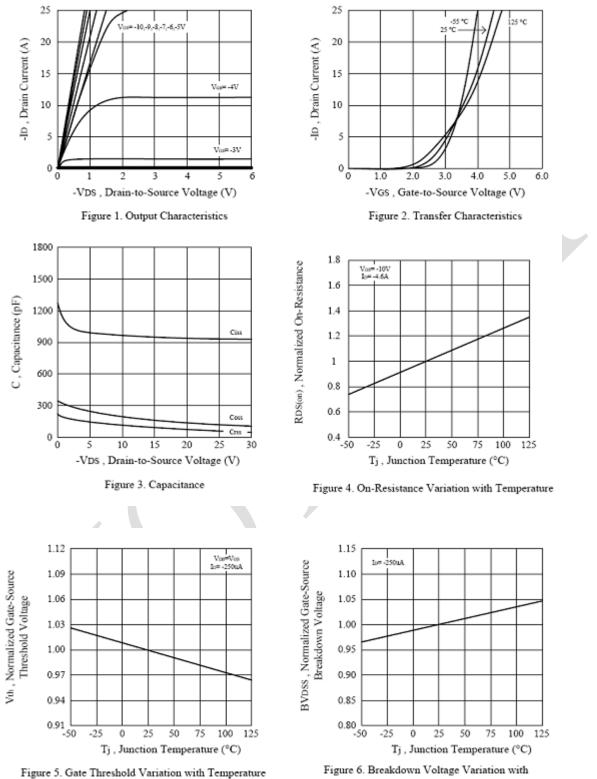
1. Surface Mounted on FR4 Board , $t\,\leqslant\,$ 10sec

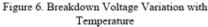
2. Pulse Test: Pulse width $\,\leqslant\,$ 300us , Duty Cycle $\,\leqslant\,$ 2%

ELECTRICAL CHARACTERISTICS

(TA=25 °C Unless Otherwise Noted)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Units	
Off Characteristics			_				
Drain-Source	BV _{DSS}	V _{GS} = 0V, I _D = -250µA	-30	-	-		
Breakdown Voltage						V	
Zero Gate Voltage	I _{DSS}	V_{DS} = -24V, V_{GS} = 0 V	-		-1		
Drain Current						μA	
Gate-Body Leakage	I _{GSS}	V_{DS} = 0V, V_{GS} = ± 25V	-	-	±100	nA	
On Characteristics (1)							
Gate Threshold Voltage	V _{GS} (th)	$V_{GS} = V_{DS}, I_{D} = -250 \mu A$	-1.2	-1.8	-2.4	V	
Drain-Source On State	RDS(ON)	V _{GS} = -10V, I _D = -5.1A	-	40	50		
Resistance		V _{GS} = -4.5V, I _D = -3.6A	-	67	95	mΩ	
Drain-Source Diode C	haracterist	tics (1)					
Diode Forward Voltage	VSD	I _S = -1.0A, V _{GS} = 0V	-	-	-1.0	V	
Dynamic Parameters	(2)						
Input Cap.	Ciss	V_{DS} = -15V, V_{GS} = 0V	-	910	-		
Output Cap.	Coss	f = 1MHz	-	170	-	pF	
Reverse Transfer Cap	Crss		-	120	-		
Switching Parameters	5 (2)			•			
Total Gate Charge	Qg	V_{DS} = -15V, V_{GS} = -10V,	-	17.4	-		
		I _D = -1A					
		V_{DS} = -15V, V_{GS} = -4.5V,		9.1	-	nC	
		I _D = -1A				no	
Gate-Source Charge	Q _{gs}	V_{DS} = -15V, V_{GS} = -10V,	-	3.1	-		
Gate-Drain Charge	Q_{gd}	I _D = -1A	-	3.5	-		
Turn-On Time	TD(on)	V_{DS} = -15V, R _L = 15 Ω I _D =	-	5.36	-		
	Tr	-1A, V _{GEN} = -10V,	-	7.76	-	nS	
Turn-Off Time	TD(off)	R _G =10Ω	-	15.84	-	-	
	Tf		-	9.84	-		


Note :


1. Pulse Test: Pulse width $\,\leqslant\,$ 300us , Duty Cycle $\,\leqslant\,$ 2%

2. Guaranteed by design, not subject to production testing

TYPICAL CHARACTERICTICS

1.2

-VDD

Rl

< Vout

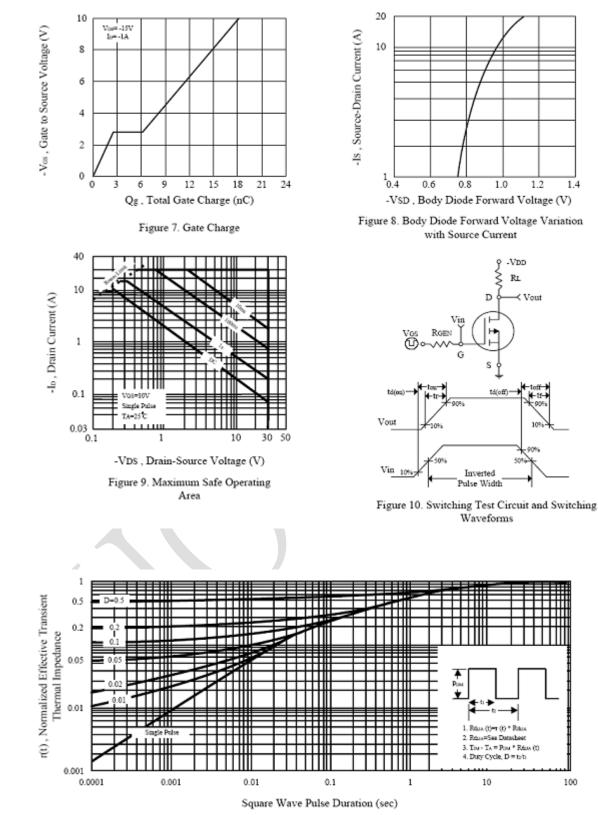
10

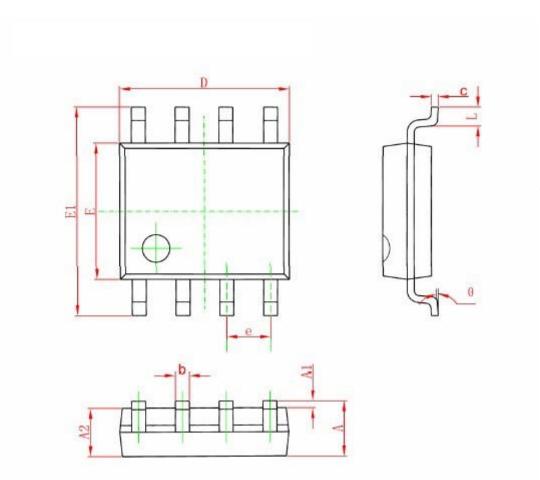
10%

50

1.4

TYPICAL CHARACTERICTICS




Figure 11. Normalized Thermal Transient Impedance Curve

100

PACKAGE DESCRIPTION

SOP8 PACKAGE OUTLINE DIMENSIONS

Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min	Max	Min	Max
Α	1.350	1.750	0.053	0.069
A1	0.100	0.250	0.004	0.010
A2	1.350	1.550	0.053	0.061
b	0. 330	0.510	0.013	0, 020
C	0.170	0. 250	0.006	0.010
D	4. 700	5.100	0, 185	0.200
E	3.800	4.000	0.150	0.157
E1	5.800	6.200	0, 228	0.244
e	1. 270 (BSC)		0. 050 (BSC)	
L	0. 400	1. 270	0.016	0.050
0	0*	8°	0°	8°

Copyright © 2008 by HOTCHIP TECHNOLOGY CO., LTD.

The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, HOTCHIP assumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used solely for the purpose of illustration and HOTCHIP makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. HOTCHIP's products are not authorized for use as critical components in life support devices or systems. HOTCHIP reserves the right to alter its products without prior notification. For the most up-to-date information, please visit our web site at http://www.hotchip.net.cn.