

IGBT Module

SK50GARL065

Preliminary Data

Features

- · Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- N-channel homogeneous silicon structure (NPT-Non punch-through IGBT)
- Low tail current with low temperature dependence
- Low threshold voltage

Typical Applications*

- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS

Absolute Maximum Ratings T _s = 25 °C, unless otherwise specified						
Symbol	Conditions		[Values	Units	
IGBT	•				'	
V_{CES}	T _j = 25 °C			600	V	
I _C	T _j = 125 °C	T _s = 25 °C		54	Α	
		$T_s = 80 ^{\circ}C$		40	А	
I _{CRM}	I _{CRM} = 2 x I _{Cnom}			120	Α	
V_{GES}				± 20	V	
t _{psc}	V_{CC} = 300 V; $V_{GE} \le 20$ V; $V_{CES} < 600$ V	T _j = 125 °C		10	μs	
Inverse I	Diode				•	
I_{F}	T _j = 150 °C	$T_s = 25 ^{\circ}C$		25	Α	
		T _s = 80 °C		17	Α	
I _{FRM}	I _{FRM} = 2 x I _{Fnom}				Α	
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 150 °C		100	А	
Freewhe	eling Diode		•		•	
I _F	T _j = 150 °C	$T_s = 25 ^{\circ}C$		64	Α	
		T _s = 80 °C		48	Α	
I _{FRM}					А	
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 150 °C		400	А	
Module					<u> </u>	
$I_{t(RMS)}$					Α	
T _{vj}				-40 + 150	°C	
T _{stg}				-40 + 125	°C	
V _{isol}	AC, 1 min.			2500	V	

Characteristics T _s		T _s =	= 25 °C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units	
IGBT							
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 0.7$ mA		3	4	5	V	
I _{CES}	V _{GE} = 600 V, V _{CE} = V _{CES}	T _j = 25 °C			0,0022	mA	
I _{GES}	$V_{CE} = 0 \text{ V}, V_{GE} = 20 \text{ V}$	T _j = 25 °C			120	nA	
V _{CE0}		T _j = 25 °C		1,2	1,3	V	
		T _j = 125 °C		1,1	1,2	V	
r _{CE}	V _{GE} = 15 V	T _j = 25°C			12	mΩ	
		T _j = 125°C			22	$m\Omega$	
V _{CE(sat)}	I _{Cnom} = 60 A, V _{GE} = 15 V			1,7	2	V	
		$T_j = 125^{\circ}C_{chiplev.}$		2,2	2,2	V	
C _{ies}				3,2		nF	
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		0,3		nF	
C _{res}				0,18		nF	
Q_G	V _{GE} =0 20 V			375		nC	
t _{d(on)}				47		ns	
t _r	$R_{Gon} = 15 \Omega$	V _{CC} = 300V		60	80	ns	
Ėon		I _C = 40A		1,07	1,4	mJ	
^L d(off)	R_{Goff} = 16 Ω	T _j = 125 °C		220	280	ns	
t _f		V _{GE} = ±15V		20	26	ns	
E _{off}				0,76	1	mJ	
$R_{th(j-s)}$	per IGBT				0,85	K/W	

SEMITOP® 2

IGBT Module

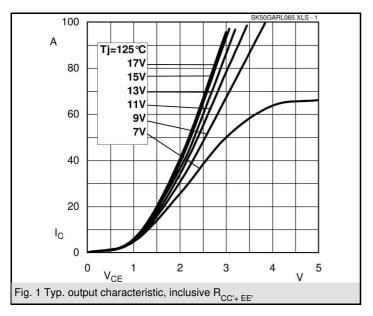
SK50GARL065

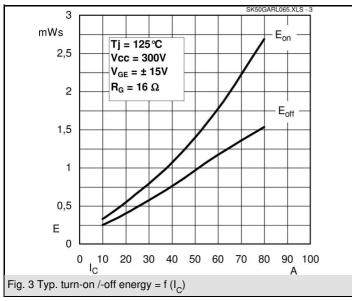
Preliminary Data

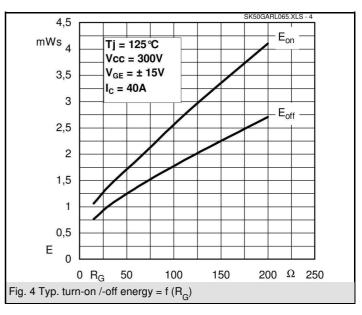
Features

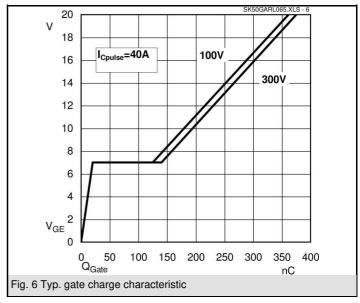
- · Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- N-channel homogeneous silicon structure (NPT-Non punch-through IGBT)
- Low tail current with low temperature dependence
- · Low threshold voltage

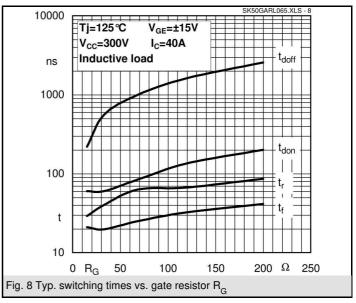
Typical Applications*

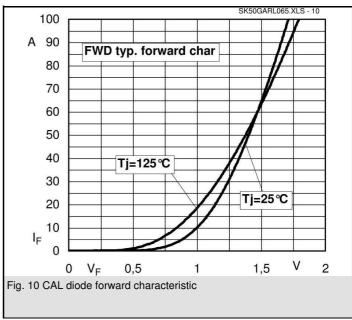

- Switching (not for linear use)
- Inverte
- Switched mode power supplies
- UPS

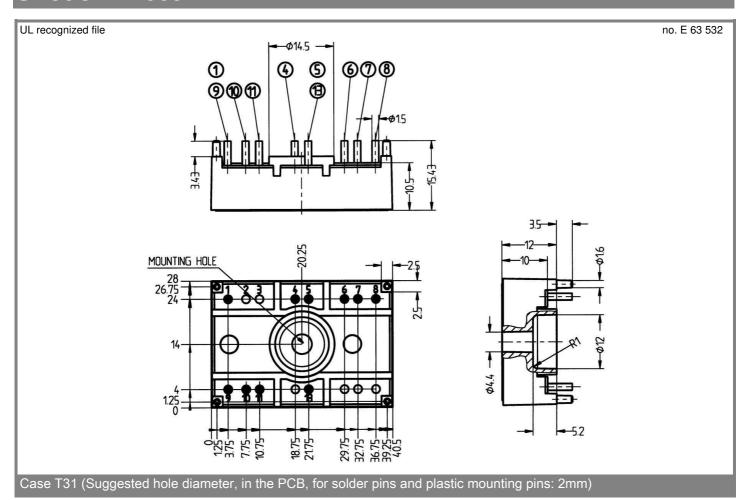

Characteristics								
Symbol	Conditions	I	min.	typ.	max.	Units		
Inverse Diode								
$V_F = V_{EC}$	$I_{Fnom} = 15 \text{ A}; V_{GE} = 0 \text{ V}$			1,4	1,7	V		
		$T_j = 125 ^{\circ}C_{\text{chiplev.}}$		1,4	1,7	V		
V_{F0}		T _j = 125 °C		0,9	1	V		
r _F		T _j = 125 °C		33	47	mΩ		
I _{RRM} Q _{rr}	I _F = 30 A di/dt = 500 A/μs	T _j = 125 °C				Α μC		
E _{rr}	V _{CC} =300V					mJ		
R _{th(j-s)D}	per diode				2,3	K/W		
	ling diode					•		
$V_F = V_{EC}$	I_{Fnom} = 60 A; V_{GE} = 0 V	$T_j = 25 ^{\circ}C_{\text{chiplev.}}$		1,45	1,7	V		
		$T_j = 150 ^{\circ}C_{\text{chiplev.}}$		1,4	1,75	V		
V_{F0}		T _j = 125 °C		0,85	0,9	V		
r _F		T _j = 125 °C		11	16	V		
I _{RRM}	I _F = 50 A	T _j = 125 °C		40		Α		
Q_{rr}	di/dt = -1000 A/μs			3,6		μC		
E _{rr}	V _R =300V			0,55		mJ		
$R_{th(j-s)D}$	per diode				1,1	K/W		
M _s	to heat sink		1,8		2	Nm		
w				19		g		

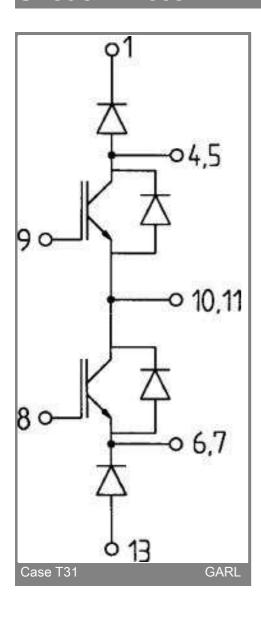

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.


* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.









5 13-02-2007 DIL © by SEMIKRON

6 13-02-2007 DIL © by SEMIKRON