
WEMOS D1 WIFI

Getting started with the WeMos D1
ESP8266 WiFi Board

The WeMos D1 is a ESP8266 WiFi based board that uses the Arduino layout

with a operating voltage of 3.3V. As the documentation of this board online

can be a little confusing, the purpose of this tutorial is to combine and simplify

the steps needed to setup this board for development. With that, let’s proceed

on with the specifications of the board.

Note: This is NOT an Arduino board, it only uses the Arduino Uno layout for the

board design!

Specifications
Here are the specification of the board:

Microcontroller ESP-8266EX

Operating Voltage 3.3V

Digital I/O Pins 11

Analog Input Pins 1

Clock Speed 80MHz/160MHz

Flash 4M bytes

Length 68.6mm

Width 53.4mm

Weight 25g

In summary, the board is controlled by the ESP8266 chip (a 32-Bit processor)

and has a larger flash memory compared to an Arduino Uno. It consists of 11

digital I/O pins and 1 analogue (input) pin. the board can be connected using

a Micro-B type USB cable. (Aka “Android Cable”)

Pinouts
All the I/O pins:

 Runs at 3.3V

 Have interrupt/PWM/I2C/one-wire support except D0
Pin Function ESP-8266 Pin

TX TXD TXD

RX RXD RXD

A0 Analog input, max 3.3V input A0

D0 IO GPIO16

D1 IO, SCL GPIO5

D2 IO, SDA GPIO4

D3 IO, 10k Pull-up GPIO0

D4 IO, 10k Pull-up, BUILTIN_LED GPIO2

D5 IO, SCK GPIO14

D6 IO, MISO GPIO12

D7 IO, MOSI GPIO13

D8 IO, 10k Pull-down, SS GPIO15

G Ground GND

5V 5V –

3V3 3.3V 3.3V

RST Reset RST

IDE
There are 2 IDE that can be used to program the ESP8266:

 The Arduino IDE

 The NodeMCU IDE

In this tutorial, we’ll be looking at how to setup the board with the Arduino IDE

on Windows. (For installation on a Linux-based system, you can visit this

website, though the installation instructions are very

similar: https://www.wemos.cc/tutorial/get-started-arduino.html)

Software Requirements
 CH340G USB to UART driver: https://www.wemos.cc/downloads

 Python 2.7: https://www.python.org/downloads/release/python-2713/

 Arduino 1.8.2: https://www.arduino.cc/en/Main/Software

Installation
Create a new folder esp8266com/esp8266 in your Arduino sketch directory. (The

Arduino sketch location should be located in “My Documents > Arduino” by

default).

Next, download the library/driver file (as zip) from

Github: https://github.com/esp8266/Arduino

After the download has completed, copy the zip file over to the [Arduino

sketch]/hardware/esp8266com/esp8266 directory & extract the contents.

A Arduino-Master folder will be created.

Next, enter the directory and drag all the content into the main directory.

Finally, remove both the Arduino-master.zip and the Arduino-master folder. Your

directory now should look like this:

Open the terminal and enter the esp8266/tools folder. (e.g. [Arduino

sketch]/hardware/esp8266com/esp8266/tools) After that, exceute the get.py script

via the python command.

C:Users[username]My DocumentsArduinohardwareesp8266comesp8266tools> python get.py

This will download the Binary Tools required to program the board. Once the

installation has completed, it should look like that:

With that, you are ready to test out your WeMos D1 board!

Examples

Blink

To test out whether the hardware library/driver is properly installed, we’ll be

testing out the sample program Blink, an equivalent to the Hello

World! example in the Hardware environment. To do so, start the Arduino IDE

and open the sketch at the following location:

C:Users[username]DocumentsArduinohardwareesp8266comesp8266librariesesp826

6examplesBlink

If you are lazy, just copy the code below:

/*

 ESP8266 Blink by Simon Peter

 Blink the blue LED on the ESP-01 module

 This example code is in the public domain

 The blue LED on the ESP-01 module is connected to GPIO1

 (which is also the TXD pin; so we cannot use Serial.print() at the same time)

 Note that this sketch uses LED_BUILTIN to find the pin with the internal LED

*/

void setup() {

 pinMode(LED_BUILTIN, OUTPUT); // Initialize the LED_BUILTIN pin as an output

}

// the loop function runs over and over again forever

void loop() {

 digitalWrite(LED_BUILTIN, LOW); // Turn the LED on (Note that LOW is the

voltage level

 // but actually the LED is on; this is because

 // it is active low on the ESP-01)

 delay(1000); // Wait for a second

 digitalWrite(LED_BUILTIN, HIGH); // Turn the LED off by making the voltage HIGH

 delay(2000); // Wait for two seconds (to demonstrate the

active low LED)

}

After opening the sketch file, go to Tools > Board and select the “WeMos D1

R2 & Mini” option. Connect the WeMos Board & upload the code. The LED on

the ESP8266 will start to blink. (If the LED on the ESP8266 is blinking when a

USB is plugged, you can try modifying the “delay” values to see whether it

updates accordingly.)

Checking out the Chip ID

To check the ID of the chip, copy the code below & upload into the WeMos D1

board.

/* Get Chip ID

 * wemos.cc

 *

 *

 */

void setup() {

 Serial.begin(115200);

}

void loop() {

 Serial.println("");

 Serial.println("");

 Serial.println("Check ID in:");

 Serial.println("https://www.wemos.cc/verify_products");

 Serial.printf("Chip ID = %08Xn", ESP.getChipId());

 Serial.println("");

 Serial.println("");

 delay(5000);

}

After the code has been uploaded, open up the Serial Monitor and set the

baudrate to 115200. The ID should be printed in the monitor.

Running a Simple Web Server

For this section, the ESP8266 will be ran as a simple server in a local

network, hosting a simple HTML file at port 80. Go to the following directory &

open up HelloServer.ino.

C:Users[username]DocumentsArduinohardwareesp8266comesp8266librariesESP826

6WebServerexamplesHelloServer

Alternatively, you can copy the code below:

#include <ESP8266WiFi.h>

#include <WiFiClient.h>

#include <ESP8266WebServer.h>

#include <ESP8266mDNS.h>

const char* ssid = "........";

const char* password = "........";

ESP8266WebServer server(80);

const int led = 13;

void handleRoot() {

 digitalWrite(led, 1);

 server.send(200, "text/plain", "Hello from esp8266!");

 digitalWrite(led, 0);

}

void handleNotFound(){

 digitalWrite(led, 1);

 String message = "File Not Foundnn";

 message += "URI: ";

 message += server.uri();

 message += "nMethod: ";

 message += (server.method() == HTTP_GET)?"GET":"POST";

 message += "nArguments: ";

 message += server.args();

 message += "n";

 for (uint8_t i=0; i<server.args(); i++){

 message += " " + server.argName(i) + ": " + server.arg(i) + "n";

 }

 server.send(404, "text/plain", message);

 digitalWrite(led, 0);

}

void setup(void){

 pinMode(led, OUTPUT);

 digitalWrite(led, 0);

 Serial.begin(115200);

 WiFi.begin(ssid, password);

 Serial.println("");

 // Wait for connection

 while (WiFi.status() != WL_CONNECTED) {

 delay(500);

 Serial.print(".");

 }

 Serial.println("");

 Serial.print("Connected to ");

 Serial.println(ssid);

 Serial.print("IP address: ");

 Serial.println(WiFi.localIP());

 if (MDNS.begin("esp8266")) {

 Serial.println("MDNS responder started");

 }

 server.on("/", handleRoot);

 server.on("/inline", [](){

 server.send(200, "text/plain", "this works as well");

 });

 server.onNotFound(handleNotFound);

 server.begin();

 Serial.println("HTTP server started");

}

void loop(void){

 server.handleClient();

}

Before uploading the code, you have to change 2 variable

value: ssid and password. Replace them with your router’s ssid (or connection

name) and the password accordingly. For example, if the router name is

“router-17” and password “1234”, the variables would look something like this:

const char* ssid = "router-17";

const char* password = "1234";

After changing the variable values, upload the code and open up the Serial

Monitor. (Set the baud rate to 115200) If the board is connected to the

network, it will display it’s IP address. Assuming that your computer is

connected to the same network, copy the IP address of the server and paste it

over at your preferred web browser. The webpage would display a simple

“Hello from esp8266!” webpage.

