WEMOS D1 WIFI

Getting started with the WeMos D1 ESP8266 WiFi Board

The WeMos D1 is a ESP8266 WiFi based board that uses the Arduino layout with a operating voltage of 3.3V. As the documentation of this board online can be a little confusing, the purpose of this tutorial is to combine and simplify the steps needed to setup this board for development. With that, let's proceed on with the specifications of the board.

Note: This is **NOT** *an Arduino board, it only uses the Arduino Uno layout for the board design!*

Specifications

Here are the specification of the board:

Microcontroller

ESP-8266EX

Operating Voltage	3.3V
Digital I/O Pins	11
Analog Input Pins	1
Clock Speed	80MHz/160MHz
Flash	4M bytes
Length	68.6mm
Width	53.4mm
Weight	25g

In summary, the board is controlled by the ESP8266 chip (a 32-Bit processor) and has a larger flash memory compared to an Arduino Uno. It consists of 11 digital I/O pins and 1 analogue (input) pin. the board can be connected using a Micro-B type USB cable. (Aka "*Android Cable*")

Pinouts

All the I/O pins:

- Runs at 3.3V
- Have interrupt/PWM/I2C/one-wire support except D0

Pin	Function	ESP-8266 Pin
ТХ	TXD	TXD
RX	RXD	RXD
A0	Analog input, max 3.3V input	A0
D0	ΙΟ	GPIO16
D1	IO, SCL	GPIO5
D2	IO, SDA	GPIO4
D3	IO, 10k Pull-up	GPIO0
D4	IO, 10k Pull-up, BUILTIN_LED	GPIO2
D5	IO, SCK	GPIO14
D6	IO, MISO	GPIO12
D7	IO, MOSI	GPIO13
D8	IO, 10k Pull-down, SS	GPIO15
G	Ground	GND
5V	5V	-
3V3	3.3V	3.3V
RST	Reset	RST

IDE

There are 2 IDE that can be used to program the ESP8266:

- The Arduino IDE
- The NodeMCU IDE

In this tutorial, we'll be looking at how to setup the board with the Arduino IDE on Windows. (For installation on a Linux-based system, you can visit this website, though the installation instructions are very similar: <u>https://www.wemos.cc/tutorial/get-started-arduino.html</u>)

Software Requirements

- CH340G USB to UART driver: <u>https://www.wemos.cc/downloads</u>
- Python 2.7: <u>https://www.python.org/downloads/release/python-2713/</u>
- Arduino 1.8.2: <u>https://www.arduino.cc/en/Main/Software</u>

Installation

Create a new folder *esp8266com/esp8266* in your Arduino sketch directory. (The Arduino sketch location should be located in *"My Documents > Arduino"* by default).

> This PC > Documents > Arduino > hardware > esp8266com > esp8266

Next, download the library/driver file (as zip) from Github: <u>https://github.com/esp8266/Arduino</u>

Features Business	Explore Pricing		This repository Search	Sign in or Sign up
p8266 / Arduino			● Watch 653 ★ Sta	ar 4,826 % Fork 2,577
Code (!) Issues 844	۱۹ Pull requests 93	Projects 0 🔲 Wiki 🥠	Pulse III Graphs	
266 core for Arduino				
7 2,330 commits	🛿 14 branches	🟷 11 releases	164 contributors	മ്പ് LGPL-2.1
⑦ 2,330 commits ich: master ▼ New pull rec	پ 9 14 branches	© 11 releases	164 contributors	at LGPL-2.1
(P) 2,330 commits ch: master • New pull reconstruction sergiotomasello committed	14 branches quest with igrr Arduino boards with ESF	♥ 11 releases P8266 (#3121)	E 164 contributors	화 LGPL-2.1
P 2,330 commits ch: master - New pull reconstruction sergiotomasello committed pootloaders/eboot	14 branches quest with igrr Arduino boards with ESP Store git version of the	N 11 releases № 266 (#3121) core in the compiled binary (#20)	La 164 contributors	tGPL-2.1 ■ Clone or download → VN using the web URL.
P 2,330 commits ch: master ▼ New pull rec sergiotomasello committed pootloaders/eboot cores/esp8266	14 branches with igrr Arduino boards with ESF Store git version of the Arduino boards with ESF	© 11 releases 28266 (#3121) core in the compiled binary (#20 P8266 (#3121)	La 164 contributors	tGPL-2.1 Ind file Clone or download → VN using the web URL. B266/Arduino.git
C,2,330 commits Inch: master New pull rec sergiotomasello committed bootloaders/eboot cores/esp8266 doc	P 14 branches quest with igrr Arduino boards with ESF Store git version of the Arduino boards with ES add AsyncPing library to	► 11 releases P8266 (#3121) core in the compiled binary (#20 P8266 (#3121) o libraries.md (#2889)	La 164 contributors	

After the download has completed, copy the zip file over to the [*Arduino sketch*]/*hardware*/*esp*8266*com*/*esp*8266 directory & extract the contents. A *Arduino-Master* folder will be created.

> This PC > Documents > Arduino > hardware > esp8266com > esp8266				
25		Name	^	Date modified
		📜 Arduino-mas	ter	11/4/2017 8:19 AM
4		🖀 Arduino-master.zip		23/4/2017 2:15 PM
15	*			

Next, enter the directory and drag all the content into the main directory. Finally, remove both the *Arduino-master.zip* and the *Arduino-master* folder. Your directory now should look like this:

This PC > Documents > Arduino > hardware > esp8266com > esp8266					
5		Name	Date modified	Туре	Size
5		bootloaders	11/4/2017 8:19 AM	File folder	
la.		Cores	11/4/2017 8:19 AM	File folder	
15	7	📕 doc	11/4/2017 8:19 AM	File folder	
ts	R	libraries	11/4/2017 8:19 AM	File folder	
	*	📕 package	11/4/2017 8:19 AM	File folder	
oud Files		Lests	11/4/2017 8:19 AM	File folder	
		📜 tools	11/4/2017 8:19 AM	File folder	
		📜 variants	11/4/2017 8:19 AM	File folder	
		gitignore	11/4/2017 8:19 AM	GITIGNORE File	1 KB
		travis.yml	11/4/2017 8:19 AM	YML File	2 KB
te		boards.txt	11/4/2017 8:19 AM	Text Document	84 KB
la la		ISSUE_TEMPLATE.md	11/4/2017 8:19 AM	MD File	1 KB
15		LICENSE	11/4/2017 8:19 AM	File	26 KB
		platform.txt	11/4/2017 8:19 AM	Text Document	7 KB
		programmers.txt	11/4/2017 8:19 AM	Text Document	0 KB
		README.md	11/4/2017 8:19 AM	MD File	8 KB
100					

Open the terminal and enter the *esp8266/tools* folder. (e.g. [*Arduino sketch*]/*hardware/esp8266com/esp8266/tools*) After that, exceute the *get.py* script via the python command.

C:Users[username]My DocumentsArduinohardwareesp8266comesp8266tools> python get.py

This will download the Binary Tools required to program the board. Once the installation has completed, it should look like that:

1	C:\Users\WK\My Documents\Arduino\hardware\esp8266com\esp8266\tools>python get.py
	Platform: i686-mingw32
	Downloading esptool-0.4.9-win32.zip
	Done
	Extracting dist/esptool-0.4.9-win32.zip
	Renaming esptool-0.4.9-win32/ to esptool
	Downloading win32-xtensa-lx106-elf-gb404fb9-2.tar.gz
	Done
	Extracting dist/win32-xtensa-lx106-elf-gb404fb9-2.tar.gz
	Downloading mkspiffs-0.1.2-windows.zip
	Done
	Extracting dist/mkspiffs-0.1.2-windows.zip
	Renaming mkspiffs-0.1.2-windows/ to mkspiffs
	C:\Users\WK\My_Documents\Arduino\hardware\esn8266com\esn8266\tools>

With that, you are ready to test out your WeMos D1 board!

Blink

To test out whether the hardware library/driver is properly installed, we'll be testing out the sample program Blink, an equivalent to the *Hello World!* example in the Hardware environment. To do so, start the Arduino IDE and open the sketch at the following location:

C:Users[username]DocumentsArduinohardwareesp8266comesp8266librariesesp826 6examplesBlink

🛓 Open an Ardu	ino sketch		×
Look <u>i</u> n:	Elink	✓ 🎯 🏚 📂 🎞 🗸	
_	Name	Date modified	Туре
	🕺 Blink.ino	11/4/2017 8:19 AM	Arduino file
Quick access			

If you are lazy, just copy the code below:

```
/*
ESP8266 Blink by Simon Peter
Blink the blue LED on the ESP-01 module
This example code is in the public domain
The blue LED on the ESP-01 module is connected to GPI01
 (which is also the TXD pin; so we cannot use Serial.print() at the same time)
Note that this sketch uses LED BUILTIN to find the pin with the internal LED
*/
void setup() {
 pinMode(LED BUILTIN, OUTPUT); // Initialize the LED BUILTIN pin as an output
}
// the loop function runs over and over again forever
void loop() {
  digitalWrite(LED BUILTIN, LOW); // Turn the LED on (Note that LOW is the
voltage level
                                    // but actually the LED is on; this is because
                                    // it is active low on the ESP-01)
```

```
delay(1000); // Wait for a second
digitalWrite(LED_BUILTIN, HIGH); // Turn the LED off by making the voltage HIGH
delay(2000); // Wait for two seconds (to demonstrate the
active low LED)
}
```

After opening the sketch file, go to Tools > Board and select the "WeMos D1 R2 & Mini" option. Connect the WeMos Board & upload the code. The LED on the ESP8266 will start to blink. (If the LED on the ESP8266 is blinking when a USB is plugged, you can try modifying the "delay" values to see whether it updates accordingly.)

Checking out the Chip ID

To check the ID of the chip, copy the code below & upload into the WeMos D1 board.

```
Get Chip ID
    wemos.cc
 * /
void setup() {
  Serial.begin(115200);
}
void loop() {
  Serial.println("");
  Serial.println("");
  Serial.println("Check ID in:");
  Serial.println("https://www.wemos.cc/verify products");
  Serial.printf("Chip ID = %08Xn", ESP.getChipId());
  Serial.println("");
  Serial.println("");
  delay(5000);
}
```

After the code has been uploaded, open up the Serial Monitor and set the baudrate to **115200**. The ID should be printed in the monitor.

Running a Simple Web Server

For this section, the ESP8266 will be ran as a simple server in a local network, hosting a simple HTML file at port 80. Go to the following directory & open up *HelloServer.ino*.

C:Users[username]DocumentsArduinohardwareesp8266comesp8266librariesESP826 6WebServerexamplesHelloServer

Alternatively, you can copy the code below:

```
#include <ESP8266WiFi.h>
#include <WiFiClient.h>
#include <ESP8266WebServer.h>
#include <ESP8266mDNS.h>
const char* ssid = ".....";
const char* password = ".....";
ESP8266WebServer server(80);
const int led = 13;
void handleRoot() {
  digitalWrite(led, 1);
  server.send(200, "text/plain", "Hello from esp8266!");
  digitalWrite(led, 0);
}
void handleNotFound() {
  digitalWrite(led, 1);
  String message = "File Not Foundnn";
  message += "URI: ";
  message += server.uri();
  message += "nMethod: ";
  message += (server.method() == HTTP GET)?"GET":"POST";
  message += "nArguments: ";
  message += server.args();
  message += "n";
  for (uint8_t i=0; i<server.args(); i++) {</pre>
    message += " " + server.argName(i) + ": " + server.arg(i) + "n";
  }
  server.send(404, "text/plain", message);
  digitalWrite(led, 0);
1
void setup(void) {
  pinMode(led, OUTPUT);
  digitalWrite(led, 0);
  Serial.begin(115200);
  WiFi.begin(ssid, password);
  Serial.println("");
  // Wait for connection
```

```
while (WiFi.status() != WL CONNECTED) {
    delay(500);
    Serial.print(".");
  }
  Serial.println("");
  Serial.print("Connected to ");
  Serial.println(ssid);
  Serial.print("IP address: ");
  Serial.println(WiFi.localIP());
  if (MDNS.begin("esp8266")) {
    Serial.println("MDNS responder started");
  }
  server.on("/", handleRoot);
  server.on("/inline", []() {
    server.send(200, "text/plain", "this works as well");
  });
  server.onNotFound(handleNotFound);
  server.begin();
  Serial.println("HTTP server started");
}
void loop(void) {
  server.handleClient();
}
```

Before uploading the code, you have to change 2 variable value: *ssid* and *password*. Replace them with your router's ssid (or connection name) and the password accordingly. For example, if the router name is "router-17" and password "1234", the variables would look something like this:

```
const char* ssid = "router-17";
const char* password = "1234";
```

After changing the variable values, upload the code and open up the Serial Monitor. (Set the baud rate to *115200*) If the board is connected to the network, it will display it's IP address. Assuming that your computer is

connected to the same network, copy the IP address of the server and paste it over at your preferred web browser. The webpage would display a simple "Hello from esp8266!" webpage.