

Vita57 Quad SFP/SATA FMC Module User Manual

HTG-FMC-X4SFP-X4SATA

Version 1.0 March 2010

Copyright © HiTech Global 2003-2010

Disclaimer:

HiTech Global does not assume any liability arising out of the application or use of any product described or shown herein; nor does it convey any license under its patents, copyrights, or mask work rights or any rights of others. HiTech Global reserves the right to make changes, at any time, in order to improve reliability and functionality of this product. HiTech Global will not assume responsibility for the use of any circuitry described herein other than circuitry entirely embodied in its products. HiTech Global provides any design, code, or information shown or described herein "as is." By providing the design, code, or information as one possible implementation of a feature, application, or standard, HiTech Global makes no representation that such implementation is free from any claims of infringement. End users are responsible for obtaining any rights they may require for their implementation. HiTech Global expressly disclaims any warranty whatsoever with respect to the adequacy of any such implementation, including but not limited to any warranties or representations that the implementation is free from claims of infringement, as well as any implied warranties of merchantability or fitness for a particular purpose.

HiTech Global will not assume any liability for the accuracy or correctness of any engineering or software support or assistance provided to a user. HiTech Global products are not intended for use in life support appliances, devices, or systems. Use of a HiTech Global product in such applications without the written consent of the appropriate HiTech Global officer is prohibited.

The contents of this manual are owned and copyrighted by HiTech Global Copyright. HiTech Global All Rights Reserved. Except as stated herein, none of the material may be copied, reproduced, distributed, republished, downloaded, displayed, posted, or transmitted in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior written consent of HiTech Global. Any unauthorized use of any material contained in this manual may violate copyright laws, trademark laws, the laws of privacy and publicity, and communications regulations and statutes.

Revision History

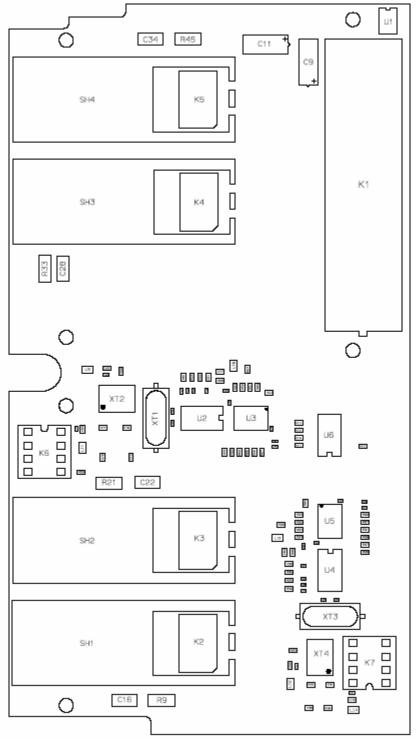
Date	Version	Notes
3/12/2010	1.0	Preliminary

Table of Contents:

1	Introduction	4
2	Main Features	4
3	Components Placement	5
4	SFP Interface	7
4.1	Clock Generation for SFP Connectors	8
5	SATA Interface	11
5.1	Clock Generation for SATA Connectors	12
6	FMC Interface	15

1) Introduction:

Vita 57 provides a mechanical standard for I/O mezzanine modules. This standard introduces a methodology that shall allow the front panel IO of IEEE 1101 form factor cards to be configured via mezzanine boards. Vita 57 modules have fixed locations for serial/parallel IOs, clocks, Jtag signals, VCC, and GND. HiTech Global's Vita 57 modules can be plugged into any Vita 57 based boards.


The FMC standard specifies Samtec's SEARAYTM connector set. The VITA 57 SEAM/SEAF Series system provides 400 I/Os in a 40 x 10 configuration or 160 I/Os in a selectively loaded 40 x 10 configuration, in 8.5mm and 10mm stack heights.

The Quad SFP/SATA FMC Module (HTG-FMC-X4SFP-X4SATA) is a FPGA Mezzanine Connector (FMC) daughter card with four SFP and FOUR Serial ATA (SATA) ports interfacing to total of 8 serial transceivers

2) Main Features:

- Four SFP Connectors
- Four SATA Connectors
- EEPROM
- FMC Connector
- Dedicated on-board Super Clock for each interface

3) Components Placement

Figure (1): Primary Side

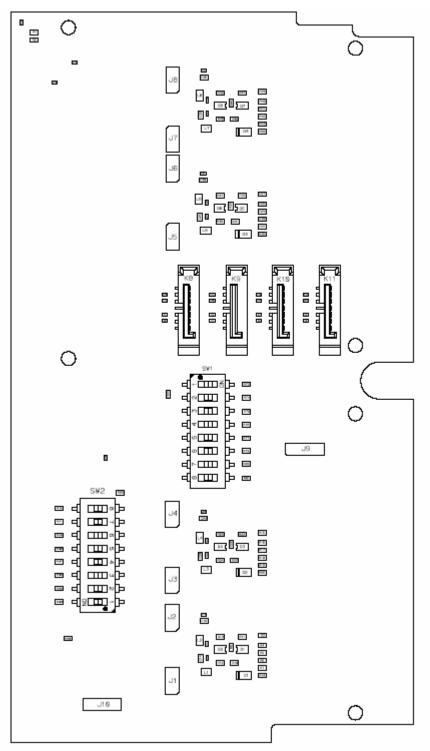


Figure (2): Secondary Side

4) SFP Interface

Four SFP cages are connected to four Serial transceivers through the FMC connector (DP4-DP7)

SFP0 "K2" Pin Name	Signal Name	FMC Pin #	Note
SFP_LOS	LA01_CC_N	D9	
SFP_TX_ENABLE	LA00_CC_P	G6	J1: forced enable with no shunt, controlled by FMC with shunt
SFP_RATESEL	LA00_CC_N	G7	J2: forced full with no shunt, controlled by FMC with shunt
SFP_TX_FAULT	LA01_CC_P	D8	
SFP_DETECT	LA02_P	H7	
SFP_SDA	SDA_2	C31	Generated by I2C Multiplexer
SFP_SCL	SCL_2	C30	Generated by I2C Multiplexer
SFP _TXP	DP4_C2M_P	A34	
SFP_TXN	DP4_C2M_N	A35	
SFP_ <mark>RX</mark> P	DP4_M2C_P	A14	
SFP_RXN	DP4_M2C_N	A15	

Tables (1-4) illustrate FMC pin assignment for the SFP ports.

Table (1): FMC Pin Assignment for SFP0 "K2"

SFP1 "K3" Pin Name	Signal Name	FMC Pin #	Notes
SFP_LOS	LA04_P	H10	
SFP_TX_ENABLE	LA02_N	H8	J3: forced enable with no shunt, controlled by FMC with shunt
SFP_RATESEL	LA03_P	G9	J4: forced full with no shunt, controlled by FMC with shunt
SFP_TX_FAULT	LA03_N	G10	
SFP_DETECT	LA04_N	H11	
SFP_SDA	SDA_3	C31	Generated by I2C Multiplexer
SFP_SCL	SCL_3	C30	Generated by I2C Multiplexer
SFP _TXP	DP5_C2M_P	A38	
SFP_TXN	DP5_C2M_N	A39	
SFP_RXP	DP5_M2C_P	A18	
SFP_ <mark>RX</mark> N	DP5_M2C_N	A19	

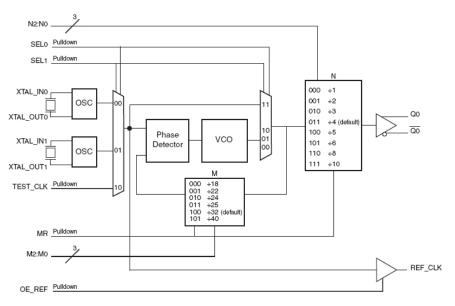
Table (2): FMC Pin Assignment for SFP1 "K3"

SFP2 "K4" Pin Name	Signal Name	FMC Pin #	Notes
SFP_LOS	LA06_N	C11	
SFP_TX_ENABLE	LA05_P	D11	J5: forced enable with no shunt, controlled by FMC with shunt
SFP_RATESEL	LA05_N	D12	J6: forced full with no shunt, controlled by FMC with shunt
SFP_TX_FAULT	LA06_P	C10	
SFP_DETECT	LA07_P	H13	
SFP_SDA	SDA_4	C31	Generated by I2C Multiplexer
SFP_SCL	SCL_4	C30	Generated by I2C Multiplexer
SFP _TXP	DP6_C2M_P	B36	
SFP_TXN	DP6_C2M_N	B37	
SFP_RXP	DP6_M2C_P	B16	
SFP_ <mark>RX</mark> N	DP6_M2C_N	B13	

Table (3): FMC Pin Assignment for SFP2 "K4"

SFP3 "K5" Pin Name	Signal Name	FMC Pin #	Notes
SFP_LOS	LA09_P	D14	
SFP_TX_ENABLE	LA07_N	H14	J7: forced enable with no shunt, controlled by FMC with shunt
SFP_RATESEL	LA08_P	G12	J8: forced full with no shunt, controlled by FMC with shunt
SFP_TX_FAULT	LA08_N	G13	
SFP_DETECT	LA09_N	D15	
SFP_SDA	SDA_5	C31	Generated by I2C Multiplexer
SFP_SCL	SCL_5	C30	Generated by I2C Multiplexer
SFP <u>TX</u> P	DP7_C2M_P	B32	
SFP_TXN	DP7_C2M_N	B33	
SFP_ <mark>RX</mark> P	DP7_M2C_P	B12	
SFP_ <mark>RX</mark> N	DP7_M2C_N	B13	

Table (4)	FMC	Pin	Assignment	for	SFP3	"K5"
-----------	-----	-----	------------	-----	------	------


4.1) Clock Generation for SFP Connectors

Clock generation circuit for the SFP connectors uses the following components (all 4 ports share the same clock)

- Socket (K7) for user oscillator of choice TEST_CLK
- Very low-jitter 25 MHz Silicon Lab Si570 Oscillator (XT4) XTAL_IN1
- 25 MHz Crystal (XT3) XTAL_IN0 and XTAL_OUT0
- ICS843001-21 (U4) low phase noise LVPECL Frequency Synthesizer
- DIFFERENTIAL-TO-LVDS FANOUT BUFFER (U5)

The Si570 XO utilizes Silicon Laboratories' advanced DSPLL® circuitry to provide a low-jitter clock at any frequency. The Si570 is user-programmable to any output frequency from 10 to 945 MHz and select frequencies to 1400 MHz with <1 ppb resolution. The device is programmed via an I2C serial interface. Unlike traditional XO/VCXOs where a different crystal is required for each output frequency, the Si57x uses one fixed frequency crystal and a DSPLL clock synthesis IC to provide any-rate frequency operation. This IC-based approach allows the crystal resonator to provide exceptional frequency stability and reliability.

ICS843001-2 is a highly versatile, low phase noise LVPECL Synthesizer which can generate low jitter reference clocks for a variety of communications applications and is a member of the HiPerClocksTM family of high performance clock solutions from IDT. The dual crystal interface allows the synthesizer to support up to two communications standards in a given application (i.e. 1GB Ethernet with a 25MHz crystal and 1Gb Fibre Channel using a 26.5625MHz crystal). The rms phase jitter performance is typically less than 1ps, thus making the device acceptable for use in demanding applications such as OC48 SONET and 10Gb Ethernet.

Figure (3): Frequency Synthesizer Block Diagram

Table (5) illustrates common configurations for different industry standard applications. Depending on value of the input frequency (through socket or on-board oscillators), "M", and "N" divider values users can generate different output frequencies.

*** Example for generating 125 MHz by using a 25 MHz oscillator:

Output frequency = (25MHz) * (25) / 5 = 625/5 = 125 MHz

Input Reference Clock (MHz)	M Divider Value	N Divider Value	VCO (MHz)	Output Frequency (MHz)	Application
27	22	8	594	74.25	HDTV
24.75	24	8	594	74.25	HDTV
14.8351649	40	8	593.4066	74.1758245	HDTV
19.44	32	4	622.08	155.52	SONET
19.44	32	8	622.08	77.76	SONET
19.44	32	1	622.08	622.08	SONET
19.44	32	2	622.08	311.04	SONET
19.53125	32	4	625	156.25	10 GigE
25	25	4	625	156.25	10 GigE
25	25	5	625	125	1 GigE
25	25	10	625	62.5	1 GigE
25	24	6	600	100	PCI Express
25	24	4	600	150	SATA
25	24	8	600	75	SATA
26.5625	24	6	637.5	106.25	Fibre Channel 1
26.5625	24	3	637.5	212.5	4 Gig Fibre Channel
26.5625	24	4	637.5	159.375	10 Gig Fibre Channel
31.25	18	5	562.5	187.5	12 GigE

 Table (5) Frequency Synthesizer Common Configuration Table

Table (6), (7), and (8) illustrate selection of "M", "N", and "Clock Source". Table (9) illustrates SW2 Dip Switch setting based on selected values of the above mentioned parameters.

Inputs				iency (MHz)	
M2	 		M Divider Value	Minimum	Maximum
0	0	0	18	31.1	38.9
0	0	1	22	25.5	31.8
0	1	0	24	23.3	29.2
0	1	1	25	22.4	28.0
1	0	0	32	17.5	21.9
1	0	1	40	14.0	17.5

 Table (6) Frequency Synthesizer Programmable "M" Output Divider Function Table

	Inputs		
N2	N1	NO	M Divider Value
0	0	0	1
0	0	1	2
0	1	0	3
0	1	1	4
1	0	0	5
1	0	1	6
1	1	0	8
1	1	1	10

Table (7) Frequency Synthesizer Programmable "N" Output Divider Function Table

Inputs			
SEL1	SELO	Reference	PLL Mode
0	0	XTAL0	1
0	1	XTAL1	2
1	0	TEST_CLK	8
1	1	TEST_CLK1	10

	DinSwitch	ICS Conf.Pin	Logic	State	
۱	DipSwitch Number	Name	DipSw. ON	DipSw. OFF	
	1	N0	0	1	
	2	N1	0	1	
3	3	N2	0	1	
	4	MO	0	1	
	5	M1	0	1	
	6	M2	0	1	
	7	SEL0	0	1	
	8	SEL1	0	1	

Table (9) Frequency Synthesizer SW2 DIP Switch Setting

5) SATA Interface

Four SATA ports are connected to four Serial transceivers through the FMC connectors (DP0-DP3)

Tables (10-13) illustrate FMC pin assignment for the SATA ports.

SATA0 "K8" Pin Name	Signal Name	FMC Pin #	Note
SATA0 _TXP	DP0_C2M_P	C2	
SATA0 _TXN	DP0_C2M_N	C3	
SATA0 <u>RX</u> P	DP0_M2C_P	C6	
SATA0 _ <mark>RX</mark> N	DP0_M2C_N	C7	

Table (10): FMC Pin Assignment for SATA "K8"

SATA1 "K9" Pin Name	Signal Name	FMC Pin #	Note
SATA1 _TXP	DP1_C2M_P	A22	
SATA1 _TXN	DP1_C2M_N	A23	
SATA1 <u>RX</u> P	DP1_M2C_P	A2	
SATA1 _RXN	DP1_M2C_N	A3	

Table (11): FMC Pin Assignment for SATA "K9"

SATA2 "K10" Pin Name	Signal Name	FMC Pin #	Note
SATA2 _TXP	DP2_C2M_P	A26	
SATA2 _TXN	DP2_C2M_N	A27	
SATA2 <u>RXP</u>	DP2_M2C_P	A6	
SATA2 _ <mark>RX</mark> N	DP2_M2C_N	A7	

Table (12): FMC Pin Assignment for SATA "K10"

SATA3 "K11" Pin Name	Signal Name	FMC Pin #	Note
SATA3 _TXP	DP3_C2M_P	A30	
SATA3 _TXN	DP3_C2M_N	A31	
SATA3 <u>RX</u> P	DP3_M2C_P	A10	
SATA3 _ <mark>RX</mark> N	DP3_M2C_N	A11	

Table (13): FMC Pin Assignment for SATA "K11"

5.1) Clock Generation for SATA Connectors

Clock generation circuit for the SATA connectors uses the following components (all 4 ports share the same clock)

- Socket (K6) for user oscillator of choice TEST_CLK
- Very low-jitter 25 MHz Silicon Lab Si570 Oscillator (XT2) XTAL_IN1
- 25 MHz Crystal (XT1) XTAL_IN0 and XTAL_OUT0
- ICS843001-21 (U2) low phase noise LVPECL Frequency Synthesizer
- DIFFERENTIAL-TO-LVDS FANOUT BUFFER (U3)

The Si570 XO utilizes Silicon Laboratories' advanced DSPLL® circuitry to provide a low-jitter clock at any frequency. The Si570 is user-programmable to any output frequency from 10 to 945 MHz and select frequencies to 1400 MHz with <1 ppb resolution. The device is programmed via an I2C serial interface. Unlike traditional XO/VCXOs where a different crystal is required for each output frequency, the Si57x uses one fixed frequency crystal and a DSPLL clock synthesis IC to provide any-rate frequency operation. This IC-based approach allows the crystal resonator to provide exceptional frequency stability and reliability.

ICS843001-2 is a highly versatile, low phase noise LVPECL Synthesizer which can generate low jitter reference clocks for a variety of communications applications and is a member of the HiPerClocksTM family of high performance clock solutions from IDT. The dual crystal interface allows the synthesizer to support up to two communications standards in a given application (i.e.

1GB Ethernet with a 25MHz crystal and 1Gb Fibre Channel using a 26.5625MHz crystal). The rms phase jitter performance is typically less than 1ps, thus making the device acceptable for use in demanding applications such as OC48 SONET and 10Gb Ethernet.

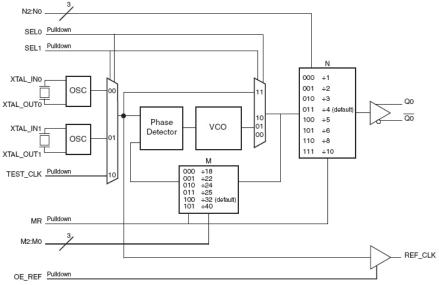


Figure (4): Frequency Synthesizer Block Diagram

Table (14) illustrates common configurations for different industry standard applications. Depending on value of the input frequency (through socket or on-board oscillators), "M", and "N" divider values users can generate different output frequencies.

Output frequency = $(25 \text{MHz}) * (24) / 4 = 600/4 = 150 \text{ MHz}$							
Input Reference Clock (MHz)	M Divider Value	N Divider Value	VCO (MHz)	Output Frequency (MHz)	Application		
27	22	8	594	74.25	HDTV		
24.75	24	8	594	74.25	HDTV		
14.8351649	40	8	593.4066	74.1758245	HDTV		
19.44	32	4	622.08	155.52	SONET		
19.44	32	8	622.08	77.76	SONET		
19.44	32	1	622.08	622.08	SONET		
19.44	32	2	622.08	311.04	SONET		
19.53125	32	4	625	156.25	10 GigE		
25	25	4	625	156.25	10 GigE		
25	25	5	625	125	1 GigE		
25	25	10	625	62.5	1 GigE		
25	24	6	600	100	PCI Express		
25	24	4	600	150	SATA		
25	24	8	600	75	SATA		
26.5625	24	6	637.5	106.25	Fibre Channel 1		
26.5625	24	3	637.5	212.5	4 Gig Fibre Channel		
26.5625	24	4	637.5	159.375	10 Gig Fibre Channel		
31.25	18	5	562.5	187.5	12 GigE		

*** Example for generating 150 MHz by using a 25 MHz oscillator:

Table (14) Frequency Synthesizer Common Configuration Table

	Inputs			Input Frequency (MHz)		
M2	 	 	M Divider Value	Minimum	Maximum	
0	0	0	18	31.1	38.9	
0	0	1	22	25.5	31.8	
0	1	0	24	23.3	29.2	
0	1	1	25	22.4	28.0	
1	0	0	32	17.5	21.9	
1	0	1	40	14.0	17.5	

Table (15), (16), and (17) illustrate selection of "M", "N", and "Clock Source". Table (18) illustrates SW1 Dip Switch setting based on selected values of the above mentioned parameters.

 Table (15) Frequency Synthesizer Programmable "M" Output Divider Function Table

	Inputs		
N2	N1	NO	M Divider Value
0	0	0	1
0	0	1	2
0	1	0	3
0	1	1	4
1	0	0	5
1	0	1	6
1	1	0	8
1	1	1	10

 1
 1
 10

 Table (16) Frequency Synthesizer Programmable "N" Output Divider Function Table

Inputs				
SEL1	SEL0	Reference	PLL Mode	
0	0	XTAL0	1	
0	1	XTAL1	2	
1	0	TEST_CLK	8	
1	1	TEST_CLK1	10	

 Table (17) Frequency Synthesizer Bypass Mode Function Table

	DipSwitch	ICS Conf.Pin	Logic State	
١	Number	Name	DipSw. ON	DipSw. OFF
	1	N0	0	1
	2	N1	0	1
3	3	N2	0	1
	4	MO	0	1
6	5	M1	0	1
	6	M2	0	1
	7	SEL0	0	1
	8	SEL1	0	1

Table (18) Frequency Synthesizer SW1 DIP Switch Setting

6) FMC Interface

The SFP+ Module is populated with a 400-pin <u>Samtec connector</u> for implementation of <u>Vita 57</u> FPGA Mezzanine Card (FMC) interface. The Vita57 calls for fixed location of IOs, Power, Clocks, and JTAG signals so any compliant module can easily be pluggable into any compliant carrier card.

The FMC connector provides access to 8 Serial Transceivers (on the FPGA side) JTAG signals, 12V/3.3V/Adjustable supplies, I2C signals, and multiple differential clocks.

Table (19) and (20) illustrate the pin assignment for the FMC connector interface.

к	J	н	G	F	Е	D	с	в	А
VREF_B_M2C	GND	VREF_A_M2C	GND	PG_M2C	GND	PG_C2M	GND	RES1	GND
2 GND	CLK3 M2C P	PRSNT M2C L	CLK1 M2C P	GND	HA01 P CC	GND	DP0 C2M P	GND	DP1 M2C P
3 GND	CLK3_M2C_N	GND	CLK1_M2C_N	GND	HA01_N_CC	GND	DP0_C2M_N	GND	DP1_M2C_N
4 CLK2_M2C_P	GND	CLK0_M2C_P	GND	HA00_P_CC	GND	GBTCLK0_M2C_P	GND	DP9_M2C_P	GND
5 CLK2_M2C_N	GND	CLK0_M2C_N	GND	HA00_N_CC	GND	GBTCLK0_M2C_N	GND	DP9_M2C_N	GND
6 GND	HA03 P	GND	LA00 P CC	GND	HA05 P	GND	DP0 M2C P	GND	DP2 M2C P
7 HA02_P	HA03_N	LA02_P	LA00_N_CC	HA04_P	HA05_N	GND	DP0_M2C_N	GND	DP2_M2C_N
8 HA02_N	GND	LA02_N	GND	HA04_N	GND	LA01_P_CC	GND	DP8_M2C_P	GND
9 GND	HA07_P	GND	LA03_P	GND	HA09_P	LA01_N_CC	GND	DP8_M2C_N	GND
10 HA06_P	HA07_N	LA04_P	LA03_N	HA08_P	HA09_N	GND	LA06_P	GND	DP3_M2C_P
11 HA06_N	GND	LA04_N	GND	HA08_N	GND	LA05_P	LA06_N	GND	DP3_M2C_N
12 GND	HA11_P	GND	LA08_P	GND	HA13_P	LA05_N	GND	DP7_M2C_P	GND
13 HA10_P	HA11_N	LA07_P	LA08_N	HA12_P	HA13_N	GND	GND	DP7_M2C_N	GND
14 HA10_N	GND	LA07_N	GND	HA12_N	GND	LA09_P	LA10_P	GND	DP4_M2C_P
15 GND	HA 14_P	GND	LA12_P	GND	HA16_P	LA09_N	LA10_N	GND	DP4_M2C_N
16 HA17_P_CC	HA14_N	LA11_P	LA12_N	HA15_P	HA16_N	GND	GND	DP6_M2C_P	GND
17 HA17_N_CC	GND	LA11_N	GND	HA15_N	GND	LA13_P	GND	DP6_M2C_N	GND
18 GND	HA 18_P	GND	LA16_P	GND	HA20_P	LA13_N	LA 14_P	GND	DP5_M2C_P
19 HA21_P	HA18_N	LA15_P	LA16_N	HA19_P	HA20_N	GND	LA14_N	GND	DP5_M2C_N
20 HA21 N	GND	LA15 N	GND	HA19 N	GND	LA17 P CC	GND	GBTCLK1 M2C P	GND
21 GND	HA22_P	GND	LA20_P	GND	HB03_P	LA17_N_CC	GND	GBTCLK1_M2C_N	GND
22 HA23_P	HA22_N	LA19_P	LA20_N	HB02_P	HB03_N	GND	LA18_P_CC	GND	DP1_C2M_P
23 HA23_N	GND	LA19_N	GND	HB02_N	GND	LA23_P	LA18_N_CC	GND	DP1_C2M_N
24 GND	HB01_P	GND	LA22_P	GND	HB05_P	LA23_N	GND	DP9_C2M_P	GND
25 HB00_P_CC	HB01_N	LA21_P	LA22_N	HB04_P	HB05_N	GND	GND	DP9_C2M_N	GND
26 HB00_N_CC	GND	LA21_N	GND	HB04_N	GND	LA26_P	LA27_P	GND	DP2_C2M_P
27 GND	HB07_P	GND	LA25_P	GND	HB09_P	LA26_N	LA27_N	GND	DP2_C2M_N
28 HB06_P_CC	HB07_N	LA24_P	LA25_N	HB08_P	HB09_N	GND	GND	DP8_C2M_P	GND
29 HB06_N_CC	GND	LA24_N	GND	HB08_N	GND	TCK	GND	DP8_C2M_N	GND
30 GND	HB11_P	GND	LA29_P	GND	HB13_P	TDI	SCL	GND	DP3_C2M_P
31 HB10_P	HB11_N	LA28_P	LA29_N	HB12_P	HB13_N	TDO	SDA	GND	DP3_C2M_N
32 HB10_N	GND	LA28_N	GND	HB12_N	GND	3P3VAUX	GND	DP7_C2M_P	GND
33 GND	HB15 P	GND	LA31 P	GND	HB19 P	TMS	GND	DP7 C2M N	GND
34 HB14_P	HB15_N	LA30_P	LA31_N	HB16_P	HB19_N	TRST_L	GA0	GND	DP4_C2M_P
35 HB14_N	GND	LA30_N	GND	HB16_N	GND	GA1	12P0V	GND	DP4_C2M_N
36 GND	HB18 P	GND	LA33 P	GND	HB21 P	3P3V	GND	DP6 C2M P	GND
37 HB17_P_CC	HB18_N	LA32_P	LA33_N	HB20_P	HB21_N	GND	12P0V	DP6_C2M_N	GND
38 HB17_N_CC	GND	LA32_N	GND	HB20_N	GND	3P3V	GND	GND	DP5_C2M_P
39 GND	VIO B M2C	GND	VADJ	GND	VADJ	GND	3P3V	GND	DP5 C2M N
40 VIO_B_M2C	GND	VADJ	GND	VADJ	GND	3P3V	GND	RES0	GND
		LPC Connector	LPC Connector			LPC Connector	LPC Connector		

 Table (19):
 FMC Pin Assignment

	Column "B"				Column "A"		
	FMC Pin Name	Pin Description	DEST.		FMC Pin Name	Pin Description	DEST.
1	RES1	Reserved		1	GND	-	
2	GND	-		2	DP1_M2C_P	SATA1 RXDATA_P	
3	GND	-		3	DP1_M2C_N	SATA1 RXDATA_N	
4	DP9_M2C_P	NC		4	GND	-	
5	DP9_M2C_N	NC		5	GND	-	
6	GND	-		6	DP2_M2C_P	SATA2 RXDATA_P	
7	GND	-		7	DP2_M2C_N	SATA2 RXDATA_N	
8	DP8_M2C_P	NC		8	GND	-	
9	DP8_M2C_N	NC		9	GND	-	
10	GND	-		10	DP3_M2C_P	SATA3 RXDATA_P	
11	GND	-		11	DP3_M2C_N	SATA3 RXDATA_N	
12	DP7_M2C_P	SFP3 RXDATA_P		12	GND	-	
13	DP7_M2C_N	SFP3 RXDATA_N		13	GND	-	
14	GND	-		14	DP4_M2C_P	SFP0 RXDATA_P	
15	GND	-		15	DP4_M2C_N	SFP0 RXDATA_N	
16	DP6_M2C_P	SFP2 RXDATA_P		16	GND	-	
17	DP6_M2C_N	SFP2 RXDATA_N		17	GND	-	
18	GND	-		18	DP5_M2C_P	SFP1 RXDATA_P	
18	GND	-		18	DP5_M2C_N	SFP1 RXDATA_N	
20	GBTCLK1_M2C_P	SFP_REF_CLK1_P		20	GND	-	
21	GBTCLK1_M2C_N	SFP_REF_CLK1_P		21	GND	-	
22	GND	-		22	DP1_C2M_P	SATA1TXDATA_P	
23	GND	-		23	DP1_C2M_N	SATA1 TXDATA_N	
24	DP9_C2M_P	NC	NC	24	GND	-	
25	DP9_C2M_N	NC	NC	25	GND	-	
26	GND	-		26	DP2_C2M_P	SATA2 TXDATA_P	
27	GND	-		27	DP2_C2M_N	SATA2 TXDATA_N	
28	DP8_C2M_P	NC	NC	28	GND	-	
29	DP8_C2M_N	NC	NC	29	GND	-	
30	GND	-		30	DP3_C2M_P	SATA3 TXDATA_P	
31	GND	-		31	DP3_C2M_N	SATA3 TXDATA_N	
32	DP7_C2M_P	SFP3 TXDATA_P		32	GND	-	
33	DP7_C2M_N	SFP3 TXDATA_N		33	GND	-	
34	GND	-		34	DP4_C2M_P	SFP0 TXDATA_P	
35	GND	-		35	DP4_C2M_N	SFP0 TXDATA_N	
36	DP6_C2M_P	SFP2 TXDATA_P		36	GND	-	
37	DP6_C2M_N	SFP2 TXDATA_N		37	GND	-	
38	GND	-		38	DP5_C2M_P	SFP1 TXDATA_P	
39	GND	-		39	DP5_C2M_N	SFP1TXDATA_N	
40	RES0	NC		40	GND	-	

	Column "D"				Column "C"		
	FMC Pin Name	Pin Description	DEST.		FMC Pin Name	Pin Description	DEST.
1	PG_C2M	Power Good		1	GND	NC	
2	GND			2	DP0_C2M_P	SATA0 TXDATA_P	
3	GND			3	DP0_C2M_N	SATA0 TXDATA_N	
4	GBTCLK0_M2C_P	SATA_REF_CLK_P		4	GND		
5	GBTCLK0_M2C_N	SATA_REF_CLK_P		5	GND		
6	GND			6	DP0_M2C_P	SATA0 RXDATA_P	
7	GND			7	DP0_M2C_N	SATA0 RXDATA_N	
8	LA01_P_CC	User defined signal	NC	8	GND		
9	LA01_N_CC	User defined signal	NC	9	GND		
10	GND			10	LA06_P		NC
11	LA05_P	User defined signal	NC	11	LA06_N		NC
12	LA05_N	User defined signal	NC	12	GND		
13	GND			13	GND		
14	LA09_P	User defined signal	NC	14	LA10_P		NC
15	LA09_N	User defined signal	NC	15	LA10_N		NC
16	GND			16	GND		
17	LA13_P	User defined signal	NC	17	GND		
18	LA13_N	User defined signal	NC	18	LA14_P		NC
18	GND			18	LA14_N		NC
20	LA17_P_CC	User defined signal	NC	20	GND		
21	LA17_N_CC	User defined signal	NC	21	GND		
22	GND			22	LA18_P_CC		NC
23	LA23_P	User defined signal	NC	23	LA18_N_CC		NC
24	LA23_N	User defined signal	NC	24	GND		
25	GND			25	GND		
26	LA26_P	User defined signal	NC	26	LA27_P		NC
27	LA26_N	User defined signal	NC	27	LA27_N		NC
28	GND			28	GND		
29	TCK	JTAG		29	GND		
30	TDI	JTAG BYPASS		30	SCL	I2C serial clock.	
31	TDO	JTAG		31	SDA	I2C serial data.	
32	3P3VAUX	3.3V Aux. Supply	3.3V	32	GND	-	-
33	TMS	JTAG		33	GND	-	-
34	TRST_L	Asynch. Init.		34	GA0	Geographical address	
35	GA1	Geographical address	U5-2	35	12P0V	12V Supply	
36	3P3V	3.3V Supply	3.3V	36	GND		
37	GND		GND	37	12P0V	12V Supply	
38	3P3V	3.3V Supply	3.3V	38	GND		
39	GND		GND	39	3P3V	3.3V Supply	
40	3P3V	3.3V Supply	3.3V	40	GND		

Column "F" Column "E" FMC Pin FMC Pin Name **Pin Description** DEST. **Pin Description** DEST. Name Power Good 1 1 PG_M2C GND GND GND 2 2 User defined signal NC GND GND GND HA01_P_CC 3 3 User defined signal NC GND GND HA01_N_CC GND 4 HA00_P_CC User defined signal NC 4 GND GND GND User defined signal 5 5 NC HA00_N_CC GND GND GND 6 GND GND 6 HA05_P User defined signal NC GND User defined signal NC 7 User defined signal NC 7 HA05_N HA04_P 8 User defined signal NC 8 HA04_N GND GND GND 9 9 User defined signal NC GND GND GND HA09_P 10 User defined signal NC 10 User defined signal NC HA08_P HA09_N User defined signal NC 11 HA08_N 11 GND GND GND 12 12 User defined signal NC GND GND GND HA13_P NC 13 User defined signal NC 13 User defined signal HA12_P HA13_N 14 User defined signal NC 14 GND HA12_N GND GND 15 15 User defined signal NC GND GND GND HA16_P NC 16 User defined signal NC 16 User defined signal HA16_N HA15_P 17 User defined signal NC 17 GND GND HA15_N GND 18 18 User defined signal NC GND GND HA20_P GND 18 User defined signal NC 18 User defined signal NC HA19_P HA20_N 20 User defined signal NC 20 GND GND HA19_N GND 21 21 User defined signal NC GND GND GND HB03_P User defined signal NC User defined signal NC 22 22 HB02_P HB03_N 23 User defined signal NC 23 HB02_N GND GND GND 24 24 User defined signal NC GND GND GND HB05_P 25 User defined signal NC 25 User defined signal NC HB05_N HB04_P User defined signal 26 NC 26 HB04_N GND GND GND 27 27 User defined signal NC GND GND GND HB09 P NC 28 User defined signal NC 28 User defined signal HB08_P HB09_N 29 User defined signal NC 29 HB08_N GND GND GND 30 30 User defined signal NC GND GND GND HB13_P 31 User defined signal NC 31 User defined signal NC HB12_P HB13_N 32 User defined signal NC 32 HB12_N GND GND GND 33 33 User defined signal NC GND GND GND HB19_P 34 User defined signal NC 34 User defined signal NC HB16_P HB19_N 35 User defined signal NC 35 HB16_N GND GND GND 36 36 User defined signal NC GND GND GND HB21_P 37 User defined signal NC 37 User defined signal NC HB20_P HB21_N 38 User defined signal NC 38 HB20_N GND GND GND 39 39 Adjustable Voltage GND GND GND VADJ

Quad SFP/SATA FMC Module – User Manual

40

VADJ

40

GND

GND

GND

Adjustable Voltage

	Column "H"				Column "G"		
	FMC Pin Name	Pin Description	DEST.		FMC Pin Name	Pin Description	DEST.
1	VREF_A_M2C	Reference voltage		1	GND	GND	GND
2	PRSNT_M2C_L	Present Signal		2	CLK1_M2C_P	Differential Clock	NC
3	GND	GND	GND	3	CLK1_M2C_N	Differential Clock	NC
4	CLK0_M2C_P	Differential Clock	NC	4	GND	GND	GND
5	CLK0_M2C_N	Differential Clock	NC	5	GND	GND	GND
6	GND	GND	GND	6	LA00_P_CC	User defined signal	NC
7	LA02_P	User defined signal	NC	7	LA00_N_CC	User defined signal	NC
8	LA02_N	User defined signal	NC	8	GND	GND	GND
9	GND	GND	GND	9	LA03_P	User defined signal	NC
10	LA04_P	User defined signal	NC	10	LA03_N	User defined signal	NC
11	LA04_N	User defined signal	NC	11	GND	GND	GND
12	GND	GND	GND	12	LA08_P	User defined signal	NC
13	LA07_P	User defined signal	NC	13	LA08_N	User defined signal	NC
14	LA07_N	User defined signal	NC	14	GND	GND	GND
15	GND	GND	GND	15	LA12_P	User defined signal	NC
16	LA11_P	User defined signal	NC	16	LA12_N	User defined signal	NC
17	LA11_N	User defined signal	NC	17	GND	GND	GND
18	GND	GND	GND	18	LA16_P	User defined signal	NC
18	LA15_P	User defined signal	NC	18	LA16_N	User defined signal	NC
20	LA15_N	User defined signal	NC	20	GND	GND	GND
21	GND	GND	GND	21	LA20_P	User defined signal	NC
22	LA19_P	User defined signal	NC	22	LA20_N	User defined signal	NC
23	LA19_N	User defined signal	NC	23	GND	GND	GND
24	GND	GND	GND	24	LA22_P	User defined signal	NC
25	LA21_P	User defined signal	NC	25	LA22_N	User defined signal	NC
26	LA21_N	User defined signal	NC	26	GND	GND	GND
27	GND	GND	GND	27	LA25_P	User defined signal	NC
28	LA24_P	User defined signal	NC	28	LA25_N	User defined signal	NC
29	LA24_N	User defined signal	NC	29	GND	GND	GND
30	GND	GND	GND	30	LA29_P	User defined signal	NC
31	LA28_P	User defined signal	NC	31	LA29_N	User defined signal	NC
32	LA28_N	User defined signal	NC	32	GND	GND	GND
33	GND	GND	GND	33	LA31_P	User defined signal	NC
34	LA30_P	User defined signal	NC	34	LA31_N	User defined signal	NC
35	LA30_N	User defined signal	NC	35	GND	GND	GND
36	GND	GND	GND	36	LA33_P	User defined signal	NC
37	LA32_P	User defined signal	NC	37	LA33_N	User defined signal	NC
38	LA32_N	User defined signal	NC	38	GND	GND	GND
39	GND	GND	GND	39	VADJ	Adjustable Voltage	
40	VADJ	Adjustable Voltage		40	GND		

	Column "K"				Column "J"		
	FMC Pin Name	Pin Description	DEST.		FMC Pin Name	Pin Description	DEST.
1	VREF_B_M2C	Reference voltage		1	GND	GND	GND
2	GND	GND	GND	2	CLK3_M2C_P	Differential Clock	NC
3	GND	GND	GND	3	CLK3_M2C_N	Differential Clock	NC
4	CLK2_M2C_P	Differential Clock	NC	4	GND	GND	GND
5	CLK2_M2C_N	Differential Clock	NC	5	GND	GND	GND
6	GND	GND	GND	6	HA03_P	User defined signal	NC
7	HA02_P	User defined signal	NC	7	HA03_N	User defined signal	NC
8	HA02_N	User defined signal	NC	8	GND	GND	GND
9	GND	GND	GND	9	HA07_P	User defined signal	NC
10	HA06_P	User defined signal	NC	10	HA07_N	User defined signal	NC
11	HA06_N	User defined signal	NC	11	GND	GND	GND
12	GND	GND	GND	12	HA11_P	User defined signal	NC
13	HA10_P	User defined signal	NC	13	HA11_N	User defined signal	NC
14	HA10_N	User defined signal	NC	14	GND	GND	GND
15	GND	GND	GND	15	HA14_P	User defined signal	NC
16	HA17_P_CC	User defined signal	NC	16	HA14_N	User defined signal	NC
17	HA17_N_CC	User defined signal	NC	17	GND	GND	GND
18	GND	GND	GND	18	HA18_P	User defined signal	NC
18	HA21_P	User defined signal	NC	18	HA18_N	User defined signal	NC
20	HA21_N	User defined signal	NC	20	GND	GND	GND
21	GND	GND	GND	21	HA22_P	User defined signal	NC
22	HA23_P	User defined signal	NC	22	HA22_N	User defined signal	NC
23	HA23_N	User defined signal	NC	23	GND	GND	GND
24	GND	GND	GND	24	HB01_P	User defined signal	NC
25	HB00_P_CC	User defined signal	NC	25	HB01_N	User defined signal	NC
26	HB00_N_CC	User defined signal	NC	26	GND	GND	GND
27	GND	GND	GND	27	HB07_P	User defined signal	NC
28	HB06_P_CC	User defined signal	NC	28	HB07_N	User defined signal	NC
29	HB06_N_CC	User defined signal	NC	29	GND	GND	GND
30	GND	GND	GND	30	HB11_P	User defined signal	NC
31	HB10_P	User defined signal	NC	31	HB11_N	User defined signal	NC
32	HB10_N	User defined signal	NC	32	GND	GND	GND
33	GND	GND	GND	33	HB15_P	User defined signal	NC
34	HB14_P	User defined signal	NC	34	HB15_N	User defined signal	NC
35	HB14_N	User defined signal	NC	35	GND	GND	GND
36	GND	GND	GND	36	HB18_P	User defined signal	NC
37	HB17_P_CC	User defined signal	NC	37	HB18_N	User defined signal	NC
38	HB17_N_CC	User defined signal	NC	38	GND	GND	GND
39	GND	GND	GND	39	VIO_B_M2C	IO Bank Voltage	
40	VIO_B_M2C	IO Bank Voltage		40	GND		

 Table (20): FMC Pin Assignment