

# STS01DTP06

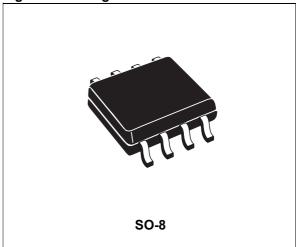
PRELIMINARY DATA

## DUAL NPN-PNP COMPLEMENTARY BIPOLAR TRANSISTOR

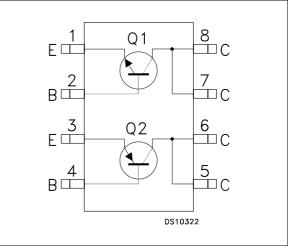
#### **Table 1: General Features**

| <b>Г</b> : |   | Package  |  |
|------------|---|----------|--|
| FIGUIE     |   | Parkano  |  |
| IIYUIC     | , | I achage |  |

| V <sub>CE(sat)</sub> h <sub>FE</sub> |       | l <sub>c</sub> |
|--------------------------------------|-------|----------------|
| 0.35 V                               | > 100 | 1A             |
|                                      |       |                |


- n HIGH GAIN
- n LOW V<sub>CE(sat)</sub>
- n SIMPLIFIED CIRCUIT DESIGN
- n REDUCED COMPONENT COUNT

#### **APPLICATION**


- PUSH-PULL OR TOTEM-POLE CONFIGURATION
- n MOSFET AND IGBT GATE DRIVING
- n MOTOR, RELAY AND SOLENOID DRIVING

#### DESCRIPTION

The STS01DTP06 is a Hybrid dual NPN-PNP complementary power bipolar transistor manufactured by using the latest low voltage planar technology. The STS01DTP06 is housed in dual island SO-8 package with separated terminals for higher assembly flexibility, specifically recommended to be used in Push-Pull or Totem Pole configuration as post IGBTs and MOSFETs driver.



#### Figure 2: Internal Schematic Diagram



#### **Table 2: Order Codes**

| Part Number  | Marking  | Package | Packaging   |
|--------------|----------|---------|-------------|
| STS01DTP06T4 | S01DTP06 | SO-8    | Tape & Reel |

| Symbol           | Parameter                                      | NPN    | PNP        | Unit |
|------------------|------------------------------------------------|--------|------------|------|
| V <sub>CBO</sub> | Collector-Base Voltage (I <sub>E</sub> = 0)    | 60     | -60        | V    |
| V <sub>CEO</sub> | Collector-Emitter Voltage (I <sub>B</sub> = 0) | 30     | -30        | V    |
| $V_{EBO}$        | Emitter-Base Voltage (I <sub>C</sub> = 0)      | 5      | -5         | V    |
| Ι <sub>C</sub>   | Collector Current                              | 3      | -3         | Α    |
| I <sub>CM</sub>  | Collector Peak Current (t <sub>p</sub> < 5ms)  | 6      | -6         | Α    |
| ۱ <sub>B</sub>   | Base Current                                   | 1      | -1         | Α    |
| I <sub>BM</sub>  | Base Peak Current (t <sub>p</sub> < 1ms)       | 2      | -2         | Α    |
| P <sub>tot</sub> | Total Dissipation at $T_{C}$ = 25 °C single    | 2      |            | W    |
| P <sub>tot</sub> | Total Dissipation at $T_{C}$ = 25 °C couple    | 1      | .6         | W    |
| T <sub>stg</sub> | Storage Temperature                            | -65 te | -65 to 150 |      |
| ТJ               | Max. Operating Junction Temperature            | 1      | 50         | °C   |

#### **Table 3: Absolute Maximum Ratings**

For PNP type voltage and current values are negative.

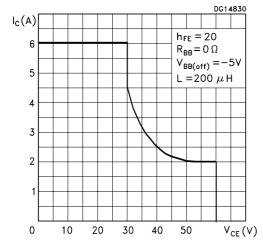
#### **Table 4: Thermal Data**

| Symbol                              | Parameter                           |     |      | Unit |
|-------------------------------------|-------------------------------------|-----|------|------|
| R <sub>thj-amb</sub> <sup>(1)</sup> | Thermal Resistance Junction-ambient | Max | 62.5 | °C/W |
| anj anto                            | (Single Operation)                  |     |      |      |
| R <sub>thj-amb</sub> <sup>(1)</sup> | Thermal Resistance Junction-ambient | Max | 78   | °C/W |
| anj anto                            | (Dual Operation)                    |     |      |      |

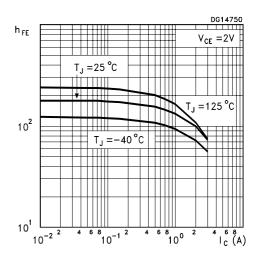
(1) When mounted on 1 inch square pad of  $\ 2$  oz. copper, t  ${\leq}10$  sec

### Table 5: Q1-NPN Transistor Electrical Characteristics ( $T_{case} = 25 \text{ }^{o}C$ unless otherwise specified)

|                        |                                        |                        | ( Cube                  |      | 1    |      | -    |
|------------------------|----------------------------------------|------------------------|-------------------------|------|------|------|------|
| Symbol                 | Parameter                              | Tes                    | t Conditions            | Min. | Тур. | Max. | Unit |
| I <sub>CBO</sub>       | Collector Cut-off Current              | V <sub>CB</sub> = 60 V |                         |      |      | 0.1  | μA   |
|                        | (I <sub>E</sub> = 0)                   |                        |                         |      |      |      |      |
| I <sub>CEO</sub>       | Collector Cut-off Current              | V <sub>CE</sub> = 30 V |                         |      |      | 1    | μA   |
|                        | (I <sub>B</sub> = 0)                   |                        |                         |      |      |      |      |
| I <sub>EBO</sub>       | Emitter Cut-off Current                | V <sub>EB</sub> = 5 V  |                         |      |      | 1    | μA   |
|                        | $(I_{\rm C} = 0)$                      |                        |                         |      |      |      |      |
| V <sub>(BR)CEO</sub> * | Collector-Emitter<br>Breakdown Voltage | I <sub>C</sub> = 10 mA |                         | 30   |      |      | V    |
|                        | (I <sub>B</sub> = 0)                   |                        |                         |      |      |      |      |
| V <sub>CE(sat)</sub> * | Collector-Emitter                      | I <sub>C</sub> = 1 A   | I <sub>B</sub> = 10 mA  |      | 0.35 | 1    | V    |
|                        | Saturation Voltage                     | I <sub>C</sub> = 2 A   | I <sub>B</sub> = 100 mA |      |      | 0.7  | V    |
| V <sub>BE(sat)</sub> * | Base-Emitter                           | I <sub>C</sub> = 1 A   | I <sub>B</sub> = 10 mA  |      | 0.85 | 1.1  | V    |
| ()                     | Saturation Voltage                     |                        |                         |      |      |      |      |
| h <sub>FE</sub> *      | DC Current Gain                        | I <sub>C</sub> = 1 A   | V <sub>CE</sub> = 2 V   | 100  |      |      |      |
|                        |                                        | I <sub>C</sub> = 3 A   | V <sub>CE</sub> = 2 V   | 30   |      |      |      |


\* Pulsed: Pulsed duration = 300  $\mu s,$  duty cycle  $\leq$  1.5 %.

| Symbol                 | Parameter                              | Test                    | Conditions               | Min. | Тур.  | Max. | Unit |
|------------------------|----------------------------------------|-------------------------|--------------------------|------|-------|------|------|
| I <sub>CBO</sub>       | Collector Cut-off Current              | V <sub>CB</sub> = -60 V |                          |      |       | -0.1 | μA   |
|                        | (I <sub>E</sub> = 0)                   |                         |                          |      |       |      |      |
| I <sub>CEO</sub>       | Collector Cut-off Current              | V <sub>CE</sub> = -30 V |                          |      |       | -1   | μA   |
|                        | (I <sub>B</sub> = 0)                   |                         |                          |      |       |      |      |
| I <sub>EBO</sub>       | Emitter Cut-off Current                | V <sub>EB</sub> = -5 V  |                          |      |       | -1   | μA   |
|                        | $(I_{\rm C} = 0)$                      |                         |                          |      |       |      |      |
| V <sub>(BR)CEO</sub> * | Collector-Emitter<br>Breakdown Voltage | I <sub>C</sub> = -10 mA |                          | -30  |       |      | V    |
|                        | (I <sub>B</sub> = 0)                   |                         |                          |      |       |      |      |
| V <sub>CE(sat)</sub> * | Collector-Emitter                      | I <sub>C</sub> = -1 A   | I <sub>B</sub> = -10 mA  |      | -0.35 | -1   | V    |
| - ()                   | Saturation Voltage                     | I <sub>C</sub> = -2 A   | I <sub>B</sub> = -100 mA |      |       | -0.7 | V    |
| V <sub>BE(sat)</sub> * | Base-Emitter                           | I <sub>C</sub> = -1 A   | I <sub>B</sub> = -10 mA  |      | -0.85 | -1.1 | V    |
| ()                     | Saturation Voltage                     |                         |                          |      |       |      |      |
| h <sub>FE</sub> *      | DC Current Gain                        | I <sub>C</sub> = -1 A   | V <sub>CE</sub> = -2 V   | 100  |       |      |      |
|                        |                                        | I <sub>C</sub> = -3 A   | V <sub>CE</sub> = -2 V   | 30   |       |      |      |


Table 6: Q2-PNP Transistor Electrical Characteristics (T<sub>case</sub> = 25 <sup>o</sup>C unless otherwise specified)

\* Pulsed: Pulsed duration = 300  $\mu$ s, duty cycle  $\leq$  1.5 %.

## Figure 3: Reverse Biased Area Q1 NPN Transistor



#### Figure 4: DC Current Gain Q1 NPN Transistor



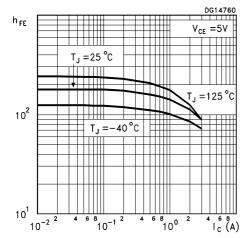



Figure 5: DC Current Gain Q1 NPN Transistor



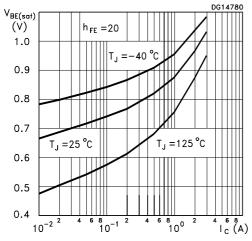
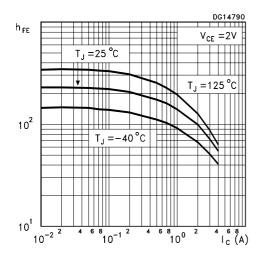




Figure 7: DC Current Gain Q2 PNP Transistor





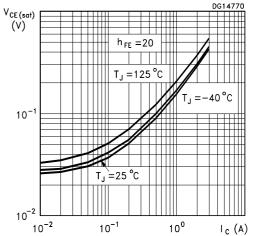
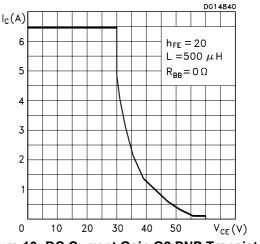
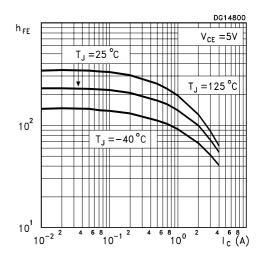
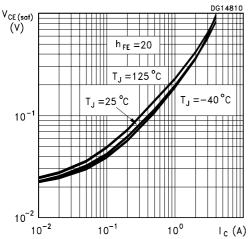



Figure 9: Reverse Biased Area Q2 PNP Transistor



Figure 10: DC Current Gain Q2 PNP Transistor



Á7/

Figure 11: Collector-Emitter Saturation Voltage Q2 PNP Transistor





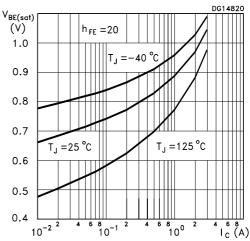
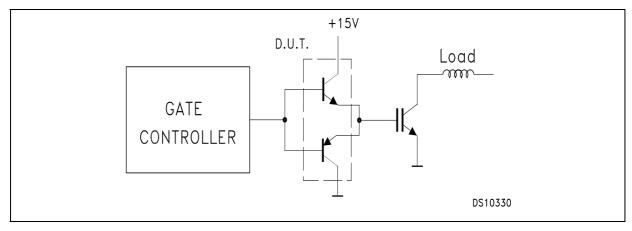
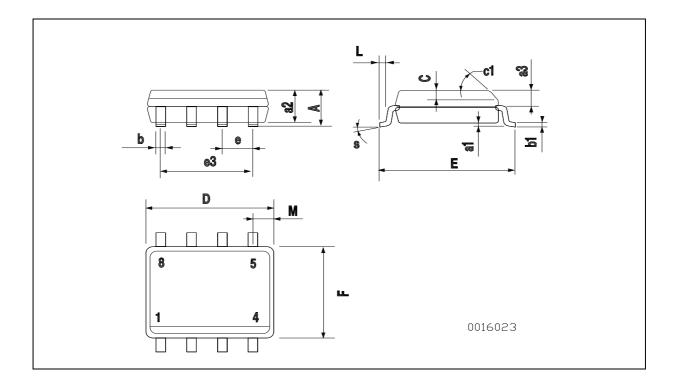




Figure 13: Typical Application




#### STS01DTP06

#### Table 7: Revision History

| Version     | Release Date | Change Designator |
|-------------|--------------|-------------------|
| 22-Apr-2005 | 1            | First Release.    |

| DIM. | mm.  |      |      |        |       |       |
|------|------|------|------|--------|-------|-------|
|      | MIN. | ТҮР  | MAX. | MIN.   | TYP.  | MAX.  |
| А    |      |      | 1.75 |        |       | 0.068 |
| a1   | 0.1  |      | 0.25 | 0.003  |       | 0.009 |
| a2   |      |      | 1.65 |        |       | 0.064 |
| a3   | 0.65 |      | 0.85 | 0.025  |       | 0.033 |
| b    | 0.35 |      | 0.48 | 0.013  |       | 0.018 |
| b1   | 0.19 |      | 0.25 | 0.007  |       | 0.010 |
| С    | 0.25 |      | 0.5  | 0.010  |       | 0.019 |
| c1   |      |      | 45 ( | (typ.) |       | •     |
| D    | 4.8  |      | 5.0  | 0.188  |       | 0.196 |
| Е    | 5.8  |      | 6.2  | 0.228  |       | 0.244 |
| е    |      | 1.27 |      |        | 0.050 |       |
| e3   |      | 3.81 |      |        | 0.150 |       |
| F    | 3.8  |      | 4.0  | 0.14   |       | 0.157 |
| L    | 0.4  |      | 1.27 | 0.015  |       | 0.050 |
| М    |      |      | 0.6  |        |       | 0.023 |
| S    |      | •    |      | nax.)  |       |       |





Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

All other names are the property of their respective owners

© 2005 STMicroelectronics - All Rights Reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com

